Combinatorica

, Volume 9, Issue 4, pp 345–362 | Cite as

Quasi-random graphs

  • F. R. K. Chung
  • R. L. Graham
  • R. M. Wilson
Article

Abstract

We introduce a large equivalence class of graph properties, all of which are shared by so-called random graphs. Unlike random graphs, however, it is often relatively easy to verify that a particular family of graphs possesses some property in this class.

AMS subject classification (1980)

05C80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Alon andF. R. K. Chung, Explicit constructions of linear-sized tolerant networksDiscrete Math.,72 (1988), 15–20.Google Scholar
  2. [2]
    B. Bollobás,Random Graphs, Academic Press, New York, 1985.Google Scholar
  3. [3]
    B. Bollobás andA. Thomason, Graphs which contain all small graphs,European J. Comb. 2 (1981), 13–15.Google Scholar
  4. [4]
    D. A. Burgess, On character sums and primitive roots,Proc. London Math. Soc. 12 (1962), 179–192.Google Scholar
  5. [5]
    P.Erdős and A.Hajnal, On spanned subgraphs of graphs,Beitrage zur Graphentheorie und deren Anwendungen, Kolloq. Oberhof (DDR), (1977), 80–96.Google Scholar
  6. [6]
    P. Erdős andJ. Spencer,Probabilistic Methods in Combinatorics, Akadémiai Kiadó, Budapest, 1974.Google Scholar
  7. [7]
    P. Frankl andR. L. Graham, Intersection theorems for vector spaces,European J. Comb. 6 (1985), 183–187.Google Scholar
  8. [8]
    P.Frankl, V.Rödl and R. M.Wilson, The number of submatrices of given type in a Hadamard matrix and related results (to appear).Google Scholar
  9. [9]
    P. Frankl andR. M. Wilson, Intersection theorems with geometric consequences,Combinatorica 1 (1981), 357–368.Google Scholar
  10. [10]
    Z. Füredi andJ. Komlós, The eigenvalues of random symmetric matrices,Combinatorica 1 (1981), 233–241.Google Scholar
  11. [11]
    F. R. Gantmacher,Matrix Theory, Vol. 1, Chelsea, New York, 1977.Google Scholar
  12. [12]
    R. L. Graham andJ. H. Spencer, A constructive solution to a tournament problem,Canad. Math. Bull. 14 (1971), 45–48.Google Scholar
  13. [13]
    F.Juhász, On the spectrum of a random graph,Colloq. Math. Soc. János Bolyai 25,Algebraic Methods in Graph Theory, Szeged (1978), 313–316.Google Scholar
  14. [14]
    H. L. Montgomery, Topics in Multiplicative Number Theory,Lecture Notes in Math. 227, Springer-Verlag, New York, 1971.Google Scholar
  15. [15]
    E. M. Palmer,Graphical Evolution, Wiley, New York, 1985.Google Scholar
  16. [16]
    V. Rödl, On the universality of graphs with uniformly distributed edges,Discrete Math. 59 (1986), 125–134.Google Scholar
  17. [17]
    A. Thomason, Random graphs, strongly regular graphs and pseudo-random graphs, in Surveys in Combinatorics 1987 (C. Whitehead, ed.)LMS Lecture Notes Series 123, Cambridge Univ. Press, Cambridge, (1987), 173–196.Google Scholar
  18. [17]
    A.Thomason, Random graphs, strongly regular graphs and pseudo-random graphs, in SurveysGoogle Scholar
  19. [18]
    A.Thomason, Pseudo-random graphs, in Proceedings of Random Graphs, Poznań 1985 (M. Karonski, ed.)Annals of Discrete Math. 33 (1987), 307–331.Google Scholar
  20. [19]
    A.Weil, Sur les courbes algébrique et les variétés qui s'en déduisent,Actualités Sci. Ind. No. 1041 (1948).Google Scholar
  21. [20]
    R. M. Wilson, Cyclotomy and difference families in abelian groups,J. Number Th. 4 (1972), 17–47.Google Scholar
  22. [21]
    R. M.Wilson, Constructions and uses of pairwise balanced designs, in Combinatorics (M. Hall, Jr. and J. H. van Lint, eds.),Math. Centre Tracts 55, Amsterdam (1974), 18–41.Google Scholar
  23. [22]
    F. R. K.Chung and R. L.Graham, Quasi-random hypergraphs,to appear.Google Scholar
  24. [23]
    S. W.Graham and C.Ringrose,to appear.Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • F. R. K. Chung
    • 1
  • R. L. Graham
    • 2
  • R. M. Wilson
    • 3
  1. 1.Bell Communications ResearchMorristownUSA
  2. 2.AT & Bell LaboratoriesMurray HillUSA
  3. 3.California Institute of TechnologyPasadenaUSA

Personalised recommendations