, Volume 9, Issue 4, pp 339–344 | Cite as

Some new strongly regular graphs

  • A. E. Brouwer
  • A. V. Ivanov
  • M. H. Klin


We show that three pairwise 4-regular graphs constructed by the second author are members of infinite families.

AMS subject classification (1980)

05C25 51E20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. E. Brouwer, Some new two-weight codes and strongly regular graphs.Discrete Appl. Math.,10 (1985) 111–114. MR 86d:05023; Zbl 561.94008.Google Scholar
  2. [2]
    A. E. Brouwer andJ. H. van Lint, Strongly regular graphs and partial geometries, pp. 85–122 in:Enumeration and Design-Proc. Silver Jubilee Conf. on Combinatorics, Waterloo,1982 (D. M. Jackson & S. A. Vanstone, eds.), Academic Press, Toronto,1984, MR 87c:05033; Zbl 555.05016.Google Scholar
  3. [3]
    A. R. Calderbank andW. M. Kantor, The geometry of two-weight codes,Bull. London Math. Soc.,18 (1986) 97–122.Google Scholar
  4. [4]
    Ph.Delsarte, Weights of linear codes and strongly regular normed spaces,Discrete Math.,3 (1972) 47–64.Google Scholar
  5. [5]
    W. H. Haemers,Eigenvalue techniques in design and graph theory, Reidel, Dordrecht (1980). Thesis (T. H. Eindhoven, 1979)=Math. Centr. Tract 121 (Amsterdam, 1980).Google Scholar
  6. [6]
    M. D. Hestenes andD. G. Higman, Rank 3 groups and strongly regular graphs, pp. 141–159 in:Computers in Algebra and Number Theory, Symp. New York 1970, SIAM-AMS Proc., vol. IV (G. Birkhoff & M. Hall, jr., eds.). AMS, Providence,1971.Google Scholar
  7. [7]
    W. M. Kantor, Exponential numbers of two-weight codes, difference sets, and symmetric designs,Discrete Math.,46 (1983) 95–98.Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • A. E. Brouwer
    • 1
  • A. V. Ivanov
    • 2
  • M. H. Klin
    • 2
  1. 1.Department of MathematicsTechn. Univ. EindhovenEindhovenThe Netherlands
  2. 2.Inst. for System StudiesMoscowSoviet Union

Personalised recommendations