Radiophysics and Quantum Electronics

, Volume 39, Issue 5, pp 410–415 | Cite as

On permittivity measurement by a resonance method

  • S. N. Vlasov
  • E. V. Koposova
  • A. B. Mazur
  • V. V. Parshin


In a quasioptical approximation we develop a theory of an open cavity with a dielectric plate placed normally to the cavity axis. We find conditions under which some natural frequencies of the cavity are practically independent of the plate position in the cavity. From experimental measurements of one of these frequencies and with variation of the length of the cavity with and without the plate, with the same oscillation- mode structure, we determine the refractive index and plate thickness. Coincidence between the obtained (“design”) thickness and mechanically measured one is a correctness criterion for the results obtained.


Refractive Index Experimental Measurement Mode Structure Quantum Electronics Nonlinear Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. A. Dryagin and V. V. Parshin,Int. J. Infr. Millim. Waves,13, No. 7, 1023 (1992).CrossRefGoogle Scholar
  2. 2.
    A. L. Cullen and P. K. Yu,Proc. Roy. Soc. London, Ser. A:,380, No. 1, 49 (1982).Google Scholar
  3. 3.
    R. J. Cook and R. G. Jones,Electron. Lett.,12, No. 1, 1 (1976).Google Scholar
  4. 4.
    B. Komiyama, M. Kiyokawa, and T. Matsui,IEEE Trans. Microwave Theory Tech.,39, No. 10, 1792 (1991).CrossRefGoogle Scholar
  5. 5.
    V. S. Averbakh, S. N. Vlasov, and V. I. Talanov,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,10, No. 9–10, 1332 (1967).Google Scholar
  6. 6.
    Yu. A. Anan'yev,Optical Cavities and the Problem of Laser-Radiation Divergence [in Russian], Nauka, Moscow (1979).Google Scholar
  7. 7.
    V. V. Parshin and A. B. Mazur, “The parameters of atmosphere influence on measurement accuracy using high-Q resonators in the MM and SubMM wavelength ranges,” in: Int. Symp. Phys. Eng. MM SubMM Waves, Khar'kov, Ukraine, Vol. 3 (1994), p. 627.Google Scholar
  8. 8.
    V. V. Parshin,Int. J. Infr. Millim. Waves,15, No. 2, 339 (1994).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • S. N. Vlasov
    • 1
  • E. V. Koposova
    • 1
  • A. B. Mazur
    • 1
  • V. V. Parshin
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of Sciences Nizhny NovgorodUSSR

Personalised recommendations