Ahypergraph-free construction of highly chromatic graphs without short cycles

Abstract

We present a purely graph-theoretical construction of highly chromatic graphs without short cycles.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    L. Lovász, On chromatic numbers of graphs and set systems,Acta Math. Acad. Sci. Hungar.,17 (1966), 61–99.

    Google Scholar 

  2. [2]

    J. Nešetřil,k-chromatic graphs without cycles of length ≦ 7,Comment. Math. Univ. Carol.,7 (1966), 373–376.

    Google Scholar 

  3. [3]

    J. Nešetřil, Amalgamation of graphs and its application,Ann. New York Acad. Sci.,319. New York (1979), 415–428.

    Google Scholar 

  4. [4]

    J. Nešetřil andV. Rödl, A Short Proof of the Existence of Highly Chromatic Hypergraphs without Short Cycles,J.C.T.,27 (1979), 225–227.

    Google Scholar 

  5. [5]

    H. Walther andH. J. Voss,Über Kreise in Graphen, Deutscher Verlag der Wissenschaften, Berlin, 1974.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kříž, I. Ahypergraph-free construction of highly chromatic graphs without short cycles. Combinatorica 9, 227–229 (1989). https://doi.org/10.1007/BF02124683

Download citation

AMS subject classification (1980)

  • 05 C 15