An extremal problem for Graham-Rothschild parameter words

Abstract

This paper exposes connections between the theory of Möbius functions and extremal problems, extending ideas of Frankl and Pach [8]. Extremal results concerning the trace of objects in geometric lattices and Graham—Rothschild parameter posets are proved, covering previous results due to Sauer [16] and Perles and Shelah [17].

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Aigner,Combinatorial Theory, Springer Verlag, New York (1979).

    Google Scholar 

  2. [2]

    N. Alon, On the density of sets of vectors,Disc. Math.,46 (1983), 199–202.

    Google Scholar 

  3. [3]

    N. Alon andV. D. Milman, Embedding ofl k in finite dimensional Banach spaces,Israel J. of Math.,45 (1983), 265–280.

    Google Scholar 

  4. [4]

    A. Benzait andB. Voigt, A combinatorial interpretation of +1/kktn,Disc. Math.,73 (1989), 27–35.

    Google Scholar 

  5. [5]

    M. Deza andP. Frankl, On the vector space of O-configurations,Combinatorica,2 (1982), 341–345.

    Google Scholar 

  6. [6]

    M. Deza, P. Frankl andN. M. Singhi, On functions of strengtht, Combinatorica,3 (1983), 331–339.

    Google Scholar 

  7. [7]

    P. Frankl, On the trace of finite sets,JCT(A),34 (1983), 41–45.

    Google Scholar 

  8. [8]

    P. Frankl andJ. Pach, On the number of sets in a nullt-design,Europ. J. Comb.,4 (1983), 21–23.

    Google Scholar 

  9. [9]

    P. Frankl andN. M. Singhi, Linear dependencies among subsets of a finite set,Europ. J. Comb.,4 (1983), 313–318.

    Google Scholar 

  10. [10]

    R. L. Graham, S.-Y. R. Li andW.-C. W. Li, On the structure oft-designs,SIAM J. Alg Disc. Meth.,1 (1980), 8–14.

    Google Scholar 

  11. [11]

    R. L. Graham andB. L. Rothschild, Ramsey's theorem forn-parameter sets,Trans. AMS,159 (1971), 257–292.

    Google Scholar 

  12. [12]

    J. E. Graver andW. B. Jurkat, The module structure of integral designs,JCT(A),15 (1973), 75–90.

    Google Scholar 

  13. [13]

    M. Karpovsky andV. D. Milman, Coordinate density of sets of vectors,Disc. Math.,24 (1978), 177–184.

    Google Scholar 

  14. [14]

    H. J.Prömel and B.Voigt, Graham—Rothschild parameter sets,to appear in: The Mathematics of Ramsey Theory, ed. by J. Něsětril, V. Rödl.

  15. [15]

    G. C. Rota, On the foundations of Combinatorial Theory: I. Theory of Möbius functions,Z. f. Wahrscheinlichkeitstheorie,2 (1964), 340–368.

    Google Scholar 

  16. [16]

    N. Sauer, On the density of families of sets,JCT(A),13 (1972), 145–147.

    Google Scholar 

  17. [17]

    S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages,Pacific J. of Math.,41 (1972), 247–261.

    Google Scholar 

  18. [18]

    L. Weisner, Abstract theory of inversion of finite series,Trans. AMS,38 (1935), 474–484.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lefmann, H. An extremal problem for Graham-Rothschild parameter words. Combinatorica 9, 153–160 (1989). https://doi.org/10.1007/BF02124677

Download citation

AMS subject classification (1980)

  • 05 C 35