# Survival time of a random graph

## Abstract

LetV n ={1, 2, ...,n} ande 1,e 2, ...,e N ,N=$$\left( {\begin{array}{*{20}c} n \\ 2 \\ \end{array} } \right)$$ be a random permutation ofV n (2). LetE t={e 1,e 2, ...,e t} andG t=(V n ,E t ). IfΠ is a monotone graph property then the hitting timeτ(Π) forΠ is defined byτ=τ(Π)=min {t:G t ∈Π}. Suppose now thatG τ starts to deteriorate i.e. loses edges in order ofage, e 1,e 2, .... We introduce the idea of thesurvival time τ =τ′(Π) defined by τt = max {u:(V n, {e u,e u+1, ...,e T }) ∈Π}. We study in particular the case whereΠ isk-connectivity. We show that

$$\mathop {\lim }\limits_{n \to \infty } \Pr (\tau ' \geqq an) = e^{ - 2a} {\mathbf{ }}for{\mathbf{ }}a \in R^ +$$
(1))
$$\mathop {\lim }\limits_{n \to \infty } \frac{1}{n}E(\tau ') = \frac{1}{n}$$
(2))

i.e.τ′/n is asymptotically negative exponentially distributed with mean 1/2.

This is a preview of subscription content, access via your institution.

## References

1. 

B.Bollobás, The evolution of sparse graphs, InGraph Theory and Combinatorics, Proc. Cambridge Combinatorial Conference in houour of Paul Erdős (B. Bollobás, Ed.), Academic Press (1984), 35–57.

2. 

B.Bollobás,Random Graphs, Academic Press, 1985.

3. 

B.Bollobás and A.Thomason, Random graphs of small order,Annals of Discrete Mathematics.

4. 

P. Erdős andA. Rényi, On random Graphs I,Publ. Math. Debrecen. 6 (1959), 290–297.

5. 

P. Erdős andA. Rényi, On the evolution of random graphs,Publ. Math. Inst. Hungar. Acad. Sci.,7 (1960), 17–61.

6. 

P. Erdős andA. Rényi, On the strength of connectedness of a random graph,Acta Math. Acad. Sci. Hungar.,12 (1961), 261–267.

7. 

E.Palmer,Graphical Evolution.

Download references

Authors

## Rights and permissions

Reprints and Permissions

## About this article

### Cite this article

Frieze, A.M., Frieze, A.M. Survival time of a random graph. Combinatorica 9, 133–143 (1989). https://doi.org/10.1007/BF02124675

Download citation

• Received:

• Issue Date:

• 05 C 80