Radiophysics and Quantum Electronics

, Volume 39, Issue 4, pp 287–295 | Cite as

Beam wave propagation within the second Rytov perturbation approximation

  • Robert M. Manning
Article

Abstract

The applicability of the classical Rytov method in statistical wave propagation problems is reconsidered and expanded by demanding results that are of second order in the permittivity fluctuations, rather than limiting them to just the first Rytov perturbation approximation, as is traditionally done. It is shown that one must augment the well-known second order statistics (e.g., log-amplitude variance), as calculated from the first Rytov approximation, with first-order statistics (e.g., the average log-amplitude), as calculated from the second Rytov approximation. Thus, a complete solution is derived for the second Rytov approximation for general beam wave propagation through turbulent media, the permittivity fluctuations of which are described by the Kolmogorov-Obukhov spectrum. This then allows a complete and consistent treatment that yields the fact that the average log-amplitude is, in the general beam wave case, not equal to the additive inverse of the log-amplitude variance. This gives results from the Rytov method that are then in exact agreement with the corresponding limiting case of strong fluctuation theory, as well as a simplified analytical expression for beam wave broadening, and the correct theoretical explanation of the well-known applicability limit for the Rytov method.

Keywords

Order Statistic Statistical Wave Complete Solution Theoretical Explanation Beam Wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Schmeltzer,Quart. Appl. Math.,24, 339 (1967).Google Scholar
  2. 2.
    D. L. Fried and J. B. Seidman,J. Opt. Soc. Am.,57, 181 (1967).Google Scholar
  3. 3.
    A. Ishimaru, “The Beam Wave Case and Remote Sensing,” in:Laser Beam Propagation in the Atmosphere, Chapt. 5. (J. W. Strohbehn, ed.), Berlin, Springer-Verlag (1978).Google Scholar
  4. 4.
    F. G. Gebhardt and S. A., Jr. Collins,J. Opt. Soc. Am.,59, 1139 (1969).Google Scholar
  5. 5.
    D. L. Fried,Proc. IEEE,55 (1), 57 (1967).Google Scholar
  6. 6.
    L. C. Andrews, R. L. Phillips, and P. T. Yu,Appl. Opt.,34 (33), 7742 (1995).Google Scholar
  7. 7.
    R. M. Manning,Stochastic Electromagnetic Image Propagation, Section 1.6., New York, McGraw-Hill (1993).Google Scholar
  8. 8.
    H. T. Yura and S. G. Hanson,J. Opt. Soc. Am.,A6 (4), 564 (1989).Google Scholar
  9. 9.
    Handbook of Mathematical Functions, (M. Abramowitz and I. A. Stegun, eds.), Dover Publications, Inc. New York, 1970.Google Scholar
  10. 10.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii,Principles of Statistical Radiophysics, Vol. 4, Section 2.5, Berlin, Springer-Verlag (1989).Google Scholar
  11. 11.
    A. D. Wheelon, private communication.Google Scholar
  12. 12.
    A. Ishimaru,Wave Propagation and Scattering in Random Media, Vol. 2., New York, Academic Press (1978).Google Scholar
  13. 13.
    F. V. Bunkin and K. S. Gochelashvili,Radiophys. Quantum Electron.,13, 811 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Robert M. Manning
    • 1
  1. 1.NASAClevelandUSA

Personalised recommendations