Skip to main content
Log in

Spectral stability under tunneling

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the spectral properties of multiple well Schrödinger operators on ℝn. We give in particular upper bounds on energy shifts due to tunnel effect and localization properties of wave packets. Our methods are based on Agmon type estimates for resolvents in classically forbidden regions and geometric perturbation theory. Our results are valid also for an infinite number of wells, arbitrary spectral type and in non-semi-classical regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Ad] Adams, R.A.: Sobolev spaces. New York: Academic Press 1975

    Google Scholar 

  • [Ag] Agmon, S.: Lectures on exponential decay of solutions of second order elliptic operators. Princeton, NJ: Princeton University Press 1982

    Google Scholar 

  • [AsHa] Asbaugh, M., Harrell, E.: Perturbation theory for shape resonances and large barrier potentials. Commun. Math. Phys.83, 151 (1982)

    Google Scholar 

  • [BCD1] Briet, Ph., Combes, J.M., Duclos, P.: Spectral properties of Schrödinger operators in the semi-classical limit. Proc. Int. Conf. on Diff. Eqn. Math. Phys., Knowles, I., Saito, Y. (eds.). Lecture Notes in Math. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  • [BCD2] Briet, Ph., Combes, J.M., Duclos, P.: On the location of resonances in the semi-classical limit III: Shape resonances (to appear)

  • [BCD3] Briet, Ph., Combes, J.M., Duclos, P.: Spectral stability under tunneling for Schrödinger operators, to appear in the Proc. of the Conf. on Partial Differential Equations, Holzhau (DDR) April 1988. Teubner-Text zur Mathematik

  • [CDS1] Combes, J.M., Duclos, P., Seiler, R.: Convergent expansions for tunneling. Commun. Math. Phys.92, 229 (1983)

    Google Scholar 

  • [CDS2] Combes, J.M., Duclos, P., Seiler, R.: On the shape resonances. Lecture Notes in Physics, vol. 211, p. 64. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  • [CDKS] Combes, J.M., Duclos, P., Klein, M., Seiler, R.: The shape resonance. Commun. Math. Phys.110, 215 (1987)

    Google Scholar 

  • [GGJ] Graffi, S., Grecchi, V., Jona-Lasinio, G.: Tunneling instability via perturbation theory. J. Phys. A17, 2935 (1984)

    Google Scholar 

  • [Ha1] Harrell, E.: Double Wells. Commun. Math. Phys.119, 351 (1979)

    Google Scholar 

  • [Ha2] Harrell, E.: The band structure of a one-dimensional periodic system in a scaling limit. Ann. Phys.75, 239 (1980)

    Google Scholar 

  • [HSj1] Helffer, B., Sjöstrand, J.: Multiple Wells in the semi-classical limit. Commun. Part. Diff. Eq.9, 337 (1984)

    Google Scholar 

  • [HSj2] Helffer, B., Sjöstrand, J.: Puits multiples. II. interaction moléculaire, symetries, perturbation. Ann. Inst. H. Poincaré2, 127 (1985)

    Google Scholar 

  • [HSj3] Helffer, B., Sjöstrand, J.: Interaction through non-resonant Wells. Mathematishe Nachriten (1985)

  • [HSj4] Helffer, B., Sjöstrand, J.: Resonances en limite semi-classique, [Suppl.] Bulletin S.M.F.114 (1986)

  • [HiSig] Hislop, P., Sigal, I.M.: Semi-classical theory of shape resonances in quantum mechanics. Mem. Am. Math. Soc.78 (399), (1989)

    Google Scholar 

  • [JMSc1] Jona-Lasinio, G., Martinelli, F., Scoppola, E.: New approach in the semi-classical limit of quantum mechanics. I. Multiple tunnelings in one dimension. Commun. Math. Phys.80, 223 (1981)

    Google Scholar 

  • [JMSc2] Jona-Lasinio, G., Martinelli, F., Scoppola, E.: Multiple tunneling ind-dimensions: a quantum particle in a hierarchical potential. Ann. Inst. H. Poincaré43, 2 (1985)

    Google Scholar 

  • [JMSc3] Jona-Lasinio, G., Martinelli, F., Scoppola, E.: A quantum particle in a hierarchical potential with tunneling over arbitrary large scales. J. Phys. A17 (1984)

  • [JMSc4] Jona-Lasinio, G., Martinelli, F., Scoppola, E.: Tunneling in one dimension: general theory, instabilities, rules of calculation, applications. Mathematics and physics, lecture on recent results, Vol. 11, Streit, L. (ed.). World Scientific: Singapore 1986

    Google Scholar 

  • [K] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966

    Google Scholar 

  • [MaR] Martinez, A., Rouleux, M.: Effet tunnel entre puits dégénérés. Comm. P.D.E. (1988)13, 1157

    Google Scholar 

  • [O] Outassourt, A.: Analyse semi-classique pour l'opérateur de Schrödinger à Potentiel Périodique. J. Funct. Anal.72, 1 (1987)

    Google Scholar 

  • [RS] Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. New York, San Francisco, London: Academic Press 1975

    Google Scholar 

  • [Sig1] Sigal, I.M.: Geometric Parametrices and the Many-Body Birman-Schwinger Principle. Duke Math. J.50, 517 (1983)

    Google Scholar 

  • [Sig2] Sigal, I.M.: Sharp Expnential bounds on resonance states and width of resonances. Adv. Appl. Math.9, 127 (1988)

    Google Scholar 

  • [Sim1] Simon, B.: Semi-classical analysis of low-lying eigenvalues. II. Tunneling. Ann. Math.120, 89 (1984)

    Google Scholar 

  • [Sim2] Simon, B.: Semi-classical analysis of low-lying eigenvalues. III. Width of the ground-state band in strongly coupled solids. Ann. Phys.158, 415 (1984)

    Google Scholar 

  • [Sim3] Simon, B.: Semi-classical analysis of low-lying eigenvalues. IV. The flea on the elephant. J. Funct. Anal.63, 123 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Laboratoire Propre, Centre National de la Recherche Scientifique

Phymat, Université de Toulon et du Var

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briet, P., Combes, J.M. & Duclos, P. Spectral stability under tunneling. Commun.Math. Phys. 126, 133–156 (1989). https://doi.org/10.1007/BF02124334

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02124334

Keywords

Navigation