, Volume 48, Issue 8, pp 701–716 | Cite as

What's new in chitinase research?

  • J. Flach
  • P. -E. Pilet
  • P. Jollès


This review article deals with recent developments in molecular and physiological aspects of chitinases from plants, fungi, bacteria, insects and fishes.

Key words

Chitinase plant chitinases fungal chitinases bacterial chitinases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeles, F. B., Bosshart, R. P., Fuence, L. E., and Habig, W. H., Preparation and purification of glucanase and chitinase from bean leaves. Pl. Physiol.47 (1970) 129–134.Google Scholar
  2. 2.
    Ary, M. B., Richardson, M., and Shewry, P. R., Purification and characterization of an insect α-amylase inhibitor/endochitinase from seeds of Job's tears (Coix lachryma-jobi). Biochim. biophys. Acta993 (1989) 260–266.Google Scholar
  3. 3.
    Audy, P., Benhamou, N., Trudel, J., and Asselin, A., Immunocytochemical localization of a wheat germ lysozyme in wheat embryo and coleoptile cells and cytochemical study of its interaction with the cell wall. Pl. Physiol.88 (1988) 1317–1322.Google Scholar
  4. 4.
    Awade, S., De Tapia, M., Didierjean, L., and Burkard, G., Biological function of bean pathogenesis-related (PR3 an PR4) proteins. Pl. Sci.63 (1989) 121–130.CrossRefGoogle Scholar
  5. 5.
    Balasubramanian, R., and Manocha, M. S., Proteinase, chitinase, and chitosanase activities in germinating spores ofPiptocephalis virginiana. Myocologia78 (1986) 157–163.Google Scholar
  6. 6.
    Benhamou, N., and Asselin, A., Attempted localization of a substrate for chitinases in plant cells reveals abundant N-acetyl-D-glucosamine residues in secondary walls. Biol. Cell67 (1989) 341–350.CrossRefGoogle Scholar
  7. 7.
    Benhamou, N., Joosten, M. H. A. J., and De Wit, P. J. G. M., Subcellular localization of chitinase and of its potential substrate in tomato root tissues infected byFusarium oxysporum f. sp.racidislycopersici. Pl. Physiol.92 (1990) 1108–1120.Google Scholar
  8. 8.
    Bernard, N., Sur la fonction fungicide des bulbes d'ophrydées. Am. Sci. Nat. Bot. Paris14 (1911) 221–234.Google Scholar
  9. 9.
    Bernasconi, P., Les lysozymes et les chitinases des cellules deRubus et deParthenocissus cultivées in vitro. Thesis, IBPV, Université de Lausanne, Switzerland 1987.Google Scholar
  10. 10.
    Bernasconi, P., Jollès, P., and Pilet, P. E., Increase of lysozyme and chitinase inRubus calli caused by infection and some polymers. Pl. Sci.44 (1986) 79–83.CrossRefGoogle Scholar
  11. 11.
    Bernasconi, P., Jollès, P., and Pilet, P. E., Purification of large amounts of lysozyme with chitinase activity fromRubus hispidus cultured in vitro, in: Chitin in Nature and Technology, pp. 234–236, Plenum Press, New York 1986.Google Scholar
  12. 12.
    Bernasconi, P., Locher, R., Pilet, P. E., Jollès, J., and Jollès, P., Purification and N-terminal amino-acid sequence of a basic lysozyme fromParthenocissus quinquifolia cultured in vitro. Biochim. biophys. Acta915 (1987) 254–260.Google Scholar
  13. 13.
    Beyer, M., and Diekmann, H., The chitinase system ofStreptomyces sp. ATCC 11238 and its significance for fungal cell wall degradation. Appl. Microbiol. Biotechnol.23 (1985) 140–146.Google Scholar
  14. 14.
    Boden, N., Sommer, U. and Spindler, K. D., Demonstration and characterization of chitinases in theDrosophila Kc cell line. Insect Biochem.15 (1985) 19–23.CrossRefGoogle Scholar
  15. 15.
    Boller, T., Ethylene and the regulation of antifungal hydrolases in plants. Oxford Surv. Pl. molec. cell. Biol.5 (1988) 145–174.Google Scholar
  16. 16.
    Boller, T., Gehri, A., Mauch, F., and Vögeli, U., Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta157 (1983) 22–31.CrossRefGoogle Scholar
  17. 17.
    Boller, T., and Mètraux, J. P., Extracellular localization of chitinase in cucumber. Physiol. molec. Pl. Path.33 (1988) 11–16.CrossRefGoogle Scholar
  18. 18.
    Boller, T., and Vögeli, U., Vacuolar localization of ethylene induced chitinase in bean leaves. Pl. Physiol.74 (1984) 442–444.Google Scholar
  19. 18b.
    Broekaert, W. F., Lee, H., Kush, A., Chua, N. H., and Raikhel, N. Wound induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis). Proc. natl. Acad. Sci. USA87 (1990) 7633–7637.PubMedGoogle Scholar
  20. 19.
    Broekaert, W. F., Van Parijs, L., Leyns, F., Joos, H., and Peumans, W. J., A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science245 (1989) 1100–1102.Google Scholar
  21. 20.
    Broglie, K. E., Biddle, P., Cressman, R., and Broglie, R., Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco. Pl. Cell1 (1989) 599–607.CrossRefGoogle Scholar
  22. 21.
    Broglie, K. E., Gaynor, J. J., and Broglie, R. M., Ethylene-regulated gene expression: mulecular cloning of the genes encoding an endochitinase fromPhaseolus vulgaris. Proc. natl. Acad. Sci. USA83 (1986) 6820–6824.PubMedGoogle Scholar
  23. 22.
    Butler, A. R., O'Donnell, R. W., Martin, V. J., Gooday, G. W., and Stark, M. J. R.,Kluyveromyces lactis toxin has an essential chitinase activity. Eur. J. Biochem.199 (1991) 483–488.CrossRefPubMedGoogle Scholar
  24. 23.
    Chagolla, A., Pedraza, M., and Lopez-Romero, E., Chitinolytic activity in cell-free extracts from mycelial cells ofMucor rousii. Rev. Mex. Microbiol.3 (1987) 283–292.Google Scholar
  25. 24.
    Chamberland, H., Charest, P. M., Ouelette, G. B., and Pauzé, F. J., Chitinase-gold complex used to localize chitin ultrastructurally in tomato root cells infected byFusarium oxysporum f. sp.radicis-lycopersici, compared with a chitin specific gold-conjugated lectin. Histochem. J.17 (1985) 313–321.CrossRefPubMedGoogle Scholar
  26. 25.
    Clark, J., Quayle, K. A., MacDonald, N. L., and Stark, J. R., Metabolism in marine flatfish. V. Chitinolytic activities in Dover sole,Solea solea. Comp. Biochem. Physiol. Pt B90 (1988) 379–384.CrossRefGoogle Scholar
  27. 26.
    Cody, R. M., Distribution of chitinase and chitobiase inBacillus. Curr. Microbiol.19 (1989) 201–205.CrossRefGoogle Scholar
  28. 27.
    Daugrois, J. H., Lafitte, C., Barthe, J. P., and Touze, A., Induction of β-1,3-glucanase and chitinase activity in compatible and in incompatible interactions betweenColletotrichum lindemuthianum and bean cultivars. J. Phytopath.130 (1990) 225–234.Google Scholar
  29. 28.
    Davis, J. M., Clarke, H. R. G., Bradshaw Jr, H. D., and Gordon, M. P.,Populus chitinase gene: structure, organization, and similarity of translated sequences to herbaceous plant chitinases. Pl. molec. Biol.17 (1991) 631–639.Google Scholar
  30. 29.
    Dickinson, K., Keer, V., Hitchcock, C. A., and Adams, D. J., Chitinase activity fromCandida albicans and its inhibition by allosamidin. J. gen. Microbiol.135 (1989) 1417–1421.PubMedGoogle Scholar
  31. 30.
    Dickinson, K., Keer, V., Hitchcock, C. A., and Adams, D. J., Microsomal chitinase activity fromCandida albicans. Biochim. biophys. Acta1073 (1991) 177–182.PubMedGoogle Scholar
  32. 30b.
    El-Sayed, G. N., Coudron, T. A., Ignoffo, C. M., and Riba, G., Chitinolytic activity and virulence associated with native and mutant isolates of an entomophathogenic fungus,Nomureae rileyi. J. invert. Path.54 (1989) 394–403.CrossRefGoogle Scholar
  33. 31.
    Esaka, M., Enoki, K., Kouchi, B., and Sasaki, T., Purification and characterization of abundant secreted protein in suspension-cultured pumpkin cells. Pl. Physiol.93 (1990) 1037–1041.Google Scholar
  34. 32.
    Fink, W., Liefland, M., and Mendgen, K., Chitnases and β-1,3-glucanases in the apoplastic compartment of oat leaves (Avena sativa L.). Pl. Physiol.88 (1988) 270–275.Google Scholar
  35. 33.
    Fuchs, R. L., MacPherson, S. A., and Drahos, D. J., Cloning of aSerratia marcescens gene encoding chitinase. Appl. envir. Microbiol.51 (1986) 504–509.Google Scholar
  36. 34.
    Fukamiso, T., and Kramer, K. J., Mechanism of chitin oligosaccharide hydrolysis by the binary enzyme chitinase system in insect moulting fluid. Insect Biochem.15 (1985) 1–7.CrossRefGoogle Scholar
  37. 35.
    Fukamiso, T., and Kramer, K. J., Mechanism of chitin hydrolysis by the binary chitinase system in insect moulting fluid. Insect Biochem.15 (1985) 141–145.CrossRefGoogle Scholar
  38. 36.
    Fukamiso, T., and Kramer, K. J., Effect of 20-hydroxyecdysone on chitinase and β-N-acetylglucosaminidase during the larval-pupal transformation ofManduca sexta (L.). Insect Biochem.17 (1987) 547–550.CrossRefGoogle Scholar
  39. 37.
    Fukamiso, T., Speirs, R. D., and Kramer, K. J., Comparative biochemistry of mycophagous and non-mycophagous grain beetles. Chitinolytic activities of foreign and sawtoothed grain beetles. Comp. Biochem. Physiol. Pt. B81 (1985) 207–209.CrossRefGoogle Scholar
  40. 38.
    Funke, B., Criel, G., and Splinder, K. D., Chitin degrading enzymes: characteristics and functions duringArtemia development, in: Cellular and Molecular Biology of Artemia Development, pp. 191–200. Plenum Press, N. Y. 1989.Google Scholar
  41. 39.
    Gaynor, J. J., Primary structure of an endochitinase mRNA fromSolanum tuberosum. Nucl. Acids Res.16 (1988) 5210.PubMedGoogle Scholar
  42. 40.
    Gaynor, J. J., and Unkenholz, K. M., Sequence analysis of a genomic clone encoding an endochitinase fromSolanum tuberosum. Nucl. Acids Res.17 (1989) 5855–5856.PubMedGoogle Scholar
  43. 41.
    Gomez Lim, M. A., Kelly, P., Sexton, R., and Trewavas, A. J., Identification of chitinase mRNA in abscission zones from bean (Phaseolus vulgaris red kidney) during ethylene-induced abscission. Pl. Cell Envir.10 (1987) 741–746.Google Scholar
  44. 42.
    Gooday, G. W., Brydon, L. J., and Chappell, L. H., Chitinase in femaleOnchocerca gisoni and its inhibition by allosamidin. Mol. Biochem. Parasitol.29 (1988) 223–225.CrossRefPubMedGoogle Scholar
  45. 43.
    Hara, S., Yamumara, Y., Fujii, Y., Mega, and Ikenaka, T., Purification and characterization of chitinase produced byStreptomyces erythraeus. J. Biochem.105 (1989) 484–489.PubMedGoogle Scholar
  46. 44.
    Harpster, M. H., and Dunsmuir, P., Nucleotide sequence of the chitinase B gene ofSerratia marcescens QMB1466. Nucl. Acid Res.17 (1989) 5395.Google Scholar
  47. 45.
    Hedrick, S. A., Bell, J. N., Boller, T., and Lamb, C. J., Chitinase cDNA cloning and mRNA induction by fungal elicitor, wounding, and infection. Pl. Physiol.86 (1988) 182–186.Google Scholar
  48. 46.
    Hendy, L., Gallagher, J., Winter, A., Hacket, T. J., McHale, L., and McHale, A. P., Production of an extracellular chitinolytic system byTalaromyces emersonii CBS 814.70. Biotechnol. Lett.12 (1990) 673–678.CrossRefGoogle Scholar
  49. 47.
    Herget, T., Schell, J., and Schreier, P. H., Elicitor-specific induction of one member of the chitinase gene family inArachis hypogaea. Molec. gen. Genet.224 (1990) 469–476.CrossRefPubMedGoogle Scholar
  50. 48.
    Herwig, R. P., Pellerin, N. B., Irgens, R. L., Maki, J. S., and Staley, J. T., Chitinolytic bacteria and chitin mineralization in the marine waters and sediments along the antarctic peninsula. FEMS Microbiol. Ecol.53 (1988) 101–112.CrossRefGoogle Scholar
  51. 49.
    Hooft van Huijsduijnen, R. A. M., Kauffmann, S., Brederode, F. Th., Cornelissen, B. J. C., Legrand, M., Fritig, B., and Bol, J. F., Homology between chitinases that are induced by TMV infection of Tobacco. Pl. molec. Biol.9 (1987) 411–420.CrossRefGoogle Scholar
  52. 50.
    Huber, M., Cabib, E., and Miller, L. H., Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proc. natl Acad. Sci. USA88 (1991) 2807–2810.PubMedGoogle Scholar
  53. 51.
    Humphreys, A. M., and Gooday, G. W., Chitinase activities fromMucor mucedo, in: Microbial Cell Wall Synthesis and Autolysis. FEMS Symposium, pp. 269–273. Ed. C. Nombela. Elsevier Scientific Press, 1984.Google Scholar
  54. 52.
    Humphreys, A. M., and Gooday, G. W., Phospholipid requirement of microsomal chitinase fromMucor mucedo. Curr. Microbiol.11 (1984) 187–190.Google Scholar
  55. 53.
    Ishige, F., Yamazaki, K., Mori, H., and Imaseki, H., The effects of ethylene on the coordinated synthesis of multiple proteins: accumulation of an acidic chitinase and a basic glycoprotein induced by ethylene in leaves of Azuki bean,Vigna angularis. Pl. Cell Physiol.32 (1991) 681–690.Google Scholar
  56. 54.
    Jekel, P. A., Hartmann, B., and Beintema, J. J., The primary structure of hevamine, an enzyme with lysozyme/chitinase activity fromHevea brasiliensis latex. Eur. J. Biochem.200 (1990) 123–130.CrossRefGoogle Scholar
  57. 55.
    Jeuniaux, C., Chitinases, in: Methods in Enzymology, vol. 8, pp. 644–650. Academic Press, New York 1966.Google Scholar
  58. 56.
    Jollès, P., and Jollès, J., What's new in lysozyme research? Molec. cell. Biochem.63 (1984) 165–189.PubMedGoogle Scholar
  59. 57.
    Jones, J. D. G., Grady, K. L., Suslow, T. V., and Bedbrook, J. R., Isolation and characterization of genes encoding two chitinase enzymes fromSerratia marcescens. EMBO J.5 (1986) 467–473.Google Scholar
  60. 58.
    Joosten, M. H. A. J., and De Wit, P. J. G. M., Identification of several pathogenesis-related proteins in tomato leaves inoculated withCladosporium fulvum (syn.Fulvia fulva) as 1,3-β-glucanases and chitinases. Pl. Physiol.89 (1989) 945–951.Google Scholar
  61. 59.
    Kamei, K., Yamamura, Y., Hara, S., and Ikenaka, T., Amino acid sequence of chitinase fromStreptomyces erythraeus. J. Biochem.105 (1989) 979–985.PubMedGoogle Scholar
  62. 60.
    Karrer, P., and Hofmann, A., Über een enzymatischen Abbau von Chitin und Chitosan I. Helv. chim. Acta12 (1929) 616–637.CrossRefGoogle Scholar
  63. 61.
    Keefe, D., Hinz, H., and Meins F. Jr, The effect of ethylene on the cell-type-specific and intracellular localization of β-1,3-glucanase and chitinase in tobacco leaves. Planta182 (1990) 43–51.CrossRefGoogle Scholar
  64. 62.
    Kless, H., Sitrit, Y., Chet, I., and Oppenheim, A. B., Cloning of the gene for chitobiase ofSerratia marcescens. Molec. gen. Genet.217 (1989) 471–473.Google Scholar
  65. 63.
    Koga, D., Jujimoto, H., Funakoshi, T., Utsumi, T., and Ide, A., Appearance of chitinolytic enzymes in integument ofBombyx mori during the larval-pupal transformation. Evidence for zymogenic forms. Insect Biochem.19 (1989) 123–128.CrossRefGoogle Scholar
  66. 64.
    Koga, D., Isogai, A., Sakuda, S., Matsumoto, S., Suzuki, A., Kimura, S., and Ide, A., Specific inhibition ofBombyx mori chitinase by allosamidin. Agric. Biol. Chem.51 (1987) 471–476.Google Scholar
  67. 65.
    Koga, D., Shimazaki, C., Yamamoto, K., Inoue, Kimura, S., and Ide, A., β-N-acetyl-D-glucosaminidases from integument of the silkworm,Bombyx mori: comparative biochemistry with the pupal alimentary canal enzyme. Agric. Biol. Chem.51 (1987) 1679–1681.Google Scholar
  68. 66.
    Kole, M. M., and Altosaar, I., Increased chitinase production by non-pigmented mutant ofSerratia marcescens. FEMS Microbiol. Lett.26 (1985) 265–269.CrossRefGoogle Scholar
  69. 67.
    Kombrink, E., Schröder, M., and Hahibrock, K., Several ‘pathogenesis-related’ proteins in potato are 1,3-β-glucanases and chitinases. Proc. natl Acad. Sci. USA85 (1988) 782–786.Google Scholar
  70. 68.
    Kono, M., Furukawa, K., Satoh, H., Matsui, T., and Shimizu, C., Changes in the chitinase activity at different stages of Red Sea breamPragus major egg, larva, and juvenile. Nippon Suisan Gakk.53 (1987) 1289–1293.Google Scholar
  71. 69.
    Kono, M., Matsui, T., and Shimizu, C., Purification and some properties of chitinase from the stomach of red sea breamPagrus major. Nippon Suisan Gakk.53 (1987) 131–136.Google Scholar
  72. 70.
    Kono, M., Matsui, T., and Shimizu, C., Chitin-decomposing bacteria in digestive tracts of cultured red sea bream and Japanese eel. Nippon Suisan Gakk.53 (1987) 305–310.Google Scholar
  73. 71.
    Kono, M., Matsui, T., Shimizu, C., and Koga, D., Purification and some properties of chitinase from the stomach of japanese eel,Anguilla japonica. Agric. Biol. Chem.54 (1990) 973–987.Google Scholar
  74. 72.
    Kono, M., Matsui, T., Shimizu, C., and Koga, D., Purification and some properties of chitinase from the liver of a prawn,Penaeus japonicus. Agric. Biol. Chem.54 (1990) 2145–2147.Google Scholar
  75. 73.
    Kragh, K. M., Jacobsen, S., and Mikkelsen, J. D., Induction, purification and characterization of barley leaf chitinase. Plant Sci.71 (1990) 55–68.CrossRefGoogle Scholar
  76. 74.
    Kramer, K. J., and Koga, D., Mini review. Insect chitin. Physical state, synthesis, degradation and metabolic regulation. Insect Biochem.16 (1986) 851–877.CrossRefGoogle Scholar
  77. 75.
    Kramerov, A. A., Metakovskii, E. V., and Gvozdev, V. A., Sulfated and chitinase-sensitive glycoproteins in cultured cells ofDrosophila melanogaster. Biochemistry USSR50 (1985) 811–822.Google Scholar
  78. 76.
    Kuranda, M. J., and Robbins, P. W., Chitinase is required for cell separation during growth ofSaccharomyces cerevisiae. J. Biol. Chem.266 (1991) 19758–19767.PubMedGoogle Scholar
  79. 77.
    Kurosaki, F., Tashiro, N., Gamou, R., and Nishi, A., Chitinase isoenzymes induced in carrot cell culture by treatment with ethylene. Phytochemistry28 (1989) 2989–2992.CrossRefGoogle Scholar
  80. 78.
    Kurosaki, F., Tashiro, N., and Nishi, A., Induction of chitinase and phenylalanine ammonia-lyase in cultured carrot cells treated with fungal mycelial walls. Pl. Cell Physiol.27 (1986) 1587–1591.Google Scholar
  81. 79.
    Kurosaki, F., Tashiro, N., and Nishi, A., Role of chitin oligosaccharides in lignification response of cultured carrot cells treated with mycelial walls. Pl. Cell Physiol.29 (1988) 527–531.Google Scholar
  82. 80.
    Kurosaki, F., Tashiro, N., and Nishi, A., Chitinase induction in carrot cell cultures treted with various fungal components. Biochem. int.20 (1990) 99–107.Google Scholar
  83. 81.
    Laflamme, D., and Roxby, R., Isolation and nucleotide sequence of cDNA clones encoding potato chitinase genes. Pl. molec. Biol.13 (1989) 249–250.CrossRefGoogle Scholar
  84. 82.
    Leah, R., Tommerup, H., Svendsen, I., and Mundy, J., Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. biol. Chem.266 (1991) 1564–1573.PubMedGoogle Scholar
  85. 83.
    Legrand, M., Kauffmann, S., Geoffroy, Pl., and Fritig, B., Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinases. Proc. natl Acad. Sci. USA84 (1987) 6750–6754.Google Scholar
  86. 84.
    Lucas, J., Henschen, A., Lottspeich, F., Voegeli, U., and Boller, T., Amino-terminal sequence of ethylene-induced bean leaf chitinase reveals similarities to sugar-binding domains of wheat germ agglutinin. FEBS Lett.193 (1985) 208–210.CrossRefGoogle Scholar
  87. 85.
    Lynn, K. R., Four lysozymes from latex ofAsclepias syriaca. Phytochemistry28 (1989) 1345–1348.CrossRefGoogle Scholar
  88. 86.
    Lynn, K. R., Chitinases and chitobiases from the American lobster (Homarus americanus). Comp. Biochem. Physiol. Pt B96 (1990) 761–766.CrossRefGoogle Scholar
  89. 87.
    Majeau, N., Trudel, J., and Asselin, A., Diversity of cucumber chitinase isoforms and characterization of one seed basic chitinase with lysozyme activity. Pl. Sci.69 (1990) 9–16.CrossRefGoogle Scholar
  90. 88.
    Manocha, M. A., and Balasubramanian, R., In vitro regulation of chitinase and chitin synthase activity of two mucoraceous host of a mycoparasite. Can. J. Microbiol.34 (1988) 1116–1121.Google Scholar
  91. 89.
    Margis-Pinheiro, M., Metz-Boutique, M. H., Awade, A., de Tapia, M., le Ret, M., and Burkard, G., Isolation of a complementary DNA encoding the bean PR4 chitinase: an acidic enzyme with an aminoterminus cysteine-rich domain. Pl. molec. Biol.17 (1991) 243–253.CrossRefGoogle Scholar
  92. 90.
    Martin, M., The latex ofHevea brasiliensis contains high levels of both chitinases and chitinases/lysozymes. Pl. Physiol.95 (1991) 469–476.Google Scholar
  93. 91.
    Mauch, F., Hadwinger, L. A., and Boller, T., Antifungal hydrolases in pea tissue. I. Purification and characterization of two chitinases and two β-1,3-glucanases differentially regulated during development and in response. Pl. Physiol.87 (1988) 325–333.Google Scholar
  94. 92.
    Mauch, F., Mauch-Mani, B., and Boller, T., Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Pl. Physiol.88 (1988) 936–942.Google Scholar
  95. 93.
    Mauch, F., and Staehelin, L. A., Functional implications of the cellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Pl. Cell1 (1989) 447–457.CrossRefGoogle Scholar
  96. 94.
    Meins, F. Jr, and Ahl, P., Induction of chitinase and β-1,3-glucanase in tobacco plants infected withPseudomonas tabaci andPhytophthora parasitica var.nicotianea. Pl. Sci.61 (1989) 155–161.CrossRefGoogle Scholar
  97. 95.
    Métraux, J. P., and Boller, T., Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections. Physiol. molec. Pl. Path.28 (1986) 161–169.Google Scholar
  98. 96.
    Métraux, J. P., Burkhart, W., Moyer, M., Dincher, S., and Middlesteadt, W., Williams, S., Payne, G., Carnes, M., and Ryals, J., Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc. natl Acad. Sci. USA86 (1989) 896–900.PubMedGoogle Scholar
  99. 97.
    Métraux, J. P., Streit, L., and Staub, Th., A pathogenesis-related protein in cucumber is a chitinase. Physiol. molec. Pl. Path.33 (1988) 1–9.CrossRefGoogle Scholar
  100. 98.
    Nanjo, F., Sakai, Ishikawa, M., Isobe, K., and Usui, T., Properties and transglycosylation reaction of a chitinase fromNocardia orientalis. Agric. Biol. Chem.53 (1989) 2189–2195.Google Scholar
  101. 99.
    Nasser, W., de Tapia, M., Kauffmann, S., Montasser-Kouhsari, S., and Burkard, G., Identification and characterization of maize pathogenesis-related proteins. Four maize PR proteins are chitinases. Pl. molec. Biol.11 (1988) 529–538.CrossRefGoogle Scholar
  102. 100.
    Nasser, W., de Tapia, M., and Burkard, G., Maize pathogenesis-related proteins: characterization and cellular distribution of 1,3-β-glucanases and chitinases induced by brome mosaic virus infection or mercuric chloride treatment. Physiol. molec. Pl. Path36 (1990) 1–14.CrossRefGoogle Scholar
  103. 101.
    Neale, A. D., Wahleithner, J. A., Lund, M., Bonnett, H. T., Kelly, A., Meekswagner, D. R., Peachock, W. J., and Dennis, E. S., Chitinase, β-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Pl. Cell2 (1990) 673–684.CrossRefGoogle Scholar
  104. 102.
    Neuhaus, J. M., Ahl-Goy, P., Hinz, U., Flores, S., and Meins F. Jr, High-level expression of a tobacco chitinase gene inNicotiana sylvestris. Susceptibility of transgenic plants toCercospora nicotianae infection. Pl. molec. Biol.16 (1991) 141–151.CrossRefGoogle Scholar
  105. 102b.
    Neuhaus, J. M., Sticher, L., Meins, F. Jr., and Boller, T., A short C-terminal sequence is necessary and sufficient for the targeting to the plant vacuole. Proc. natl Acad. Sci.88 (1991) 10362–10366.PubMedGoogle Scholar
  106. 103.
    Nishizawa, Y., and Hibi, T., Rice chitinase gene: cDNA cloning and stress-induced expression. Pl. Sci.76 (1991) 211–218.CrossRefGoogle Scholar
  107. 104.
    Parent, J. G., and Asselin, A., Detection of pathogenesis proteins (PR or b) and of other proteins in the intercellular fluid of hypersensitive plants infected with tobacco mosaic virus. Can. J. Botany62 (1984) 564–569.Google Scholar
  108. 105.
    Payne, G., Ahl, P., Moyer, M., Harper, A., Beck, J., Meins, F., and Ryals, J., Isolation of complementary DNA clones encoding pathogenesis-related proteins P and Q, two acidic chitinases from tobacco. Proc. natl. Acad. Sci. USA87 (1990) 98–102.PubMedGoogle Scholar
  109. 106.
    Pedraza-Reyes, M., and Lopez-Romero, E., Purification and some properties of two forms of chitinase from mycelial cells ofMucor rouxii. J. gen. Microbiol.135 (1989) 211–218.PubMedGoogle Scholar
  110. 107.
    Pedraza-Reyes, M., and Lopez-Romero, E., Detection of nine chitinase species in germinating cells ofMucor rouxii. Curr. Microbiol.22 (1991) 43–46.CrossRefGoogle Scholar
  111. 108.
    Pel, R., Microbial interaction in anaerobic chitin-degrading mixed cultures. Thesis, Rijksuniversiteit Groningen, Netherland 1989.Google Scholar
  112. 109.
    Peter, G., and Schweikart, F., Chitin biosynthesis enhancement by the endochitinase inhibitor allosamidin. Biol. Chem. Hoppe-Seyler371 (1990) 471–473.PubMedGoogle Scholar
  113. 110.
    Rehbein, H., Danulat, E., and Leineman, M., Activities of chitinase and protease and concentration of fluoride in the digestive tract of antarctic fishes feeding on krill (Euphasia superba Dana). Comp. Biochem. Physiol. Pt A85 (1986) 545–511.CrossRefGoogle Scholar
  114. 111.
    Reyes, F., Calatayud, J., and Martinez, M. J., Chitinolytic activity in the autolysis ofAspergillus nidulans. FEMS Microbiol. Lett.49 (1988) 239–243.CrossRefGoogle Scholar
  115. 112.
    Ride, J. P., and Barber, M. S., Purification and characterization of multiple forms of endochitinase from wheat leaves. Pl. Sci.71 (1990) 185–197.CrossRefGoogle Scholar
  116. 113.
    Robbins, P. W., Albright, C., and Benfield, B., Cloning and expression of aStreptomyces plicatus chitinase (chitinase-63) inEscherichia coli. J. biol. Chem.262 (1988) 443–447.Google Scholar
  117. 113b.
    Robbins, P. W., Trimble, R. B., Wirth, D. F., Hering, C., Maley, F., Maley, G. F., Das, R., Gibson, B. W., Royal, N., and Biemann, K., Primary structure of theStreptomyces enzyme endo-β-N-acetylglucosaminidase H. J. biol. Chem.259 (1984) 7577–7583.PubMedGoogle Scholar
  118. 114.
    Roberts, W. K., and Selitrennikoff, C. P., Plant and bacterial chitinases differ in antifungal activity. J. gen. Microbiol.134 (1988) 169–176.Google Scholar
  119. 115.
    Roby, D., Broglie, K., Cressman, R., Biddle, P., Chet, I., and Broglie, R., Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Pl. Cell2 (1990) 999–1007.CrossRefGoogle Scholar
  120. 116.
    Roby, D., and Broglie, R., Regulation of a chitinase gene promoter by ethylene and elicitors in bean protoplasts. Pl. Physiol.97 (1991) 433–439.Google Scholar
  121. 117.
    Roby, D., and Esquere-Tugaye, M. T., Purification and some properties of chitinases from melon plants infected byColletotrichum lagenarium. Carbohyd. Res.165 (1987) 93–104.CrossRefGoogle Scholar
  122. 118.
    Roby, D., and Esquerre-Tugaye, M. T., Induction of chitinases and of translatable mRNA for these enzymes in melon plants infected withColletotrichum lagenarium. Pl. Sci.52 (1987) 175–185.CrossRefGoogle Scholar
  123. 119.
    Roby, D., Gadelle, A. and Toppan, A., Chitin oligosacharides as elicitors of chitinase activity in melon plants. Biochem. biophys. Res. Commun.143 (1987) 885–892.CrossRefPubMedGoogle Scholar
  124. 120.
    Roby, D., Toppan, A., and Esquerré-Tugayé, M. T., Cell surfaces in plant-microorganism interactions. VI. Elicitors of ethylene fromColletotrichum lagenarium trigger chitinase activity in melon plants. Pl. Physiol.81 (1986) 228–233.Google Scholar
  125. 121.
    Roby, D., Toppan, A., and Esquerré-Tugayé, M. T., Systemic induction of chitinase activity and resistance in melon plants upon fungal infection or elicitor treatment. Physiol. molec. Pl. Path.33 (1988) 409–417.CrossRefGoogle Scholar
  126. 122.
    Rozeboom, H. J., Budiani, A., Beintema, J. J., and Dijkstra, B. W., Crystallization of hevamine, an enzyme with lysozyme/chitinase activity fromHevea brasiliensis latex. J. molec. Biol.212 (1990) 441–443.CrossRefPubMedGoogle Scholar
  127. 123.
    Ryder, T. B., Hedrick, S. A., Bell, J. N., Liang, X., Clouse, S. D., and Lamb, C. J., Organisation and differential expression of a gene family encoding the plant defense enzyme chalcone synthase inPhaseolus vulgaris. Molec. gen. Genet.210 (1987) 219–223.CrossRefPubMedGoogle Scholar
  128. 124.
    Sakuda, S., Isogai, A., Makita, T., Matsumoto, S., Koseki, K., Kodama, H., and Suzuki, A., Structures of allosamidins, novel insect chitinase inhibitors, produced by actinomycetes. Agric. Biol. Chem.51 (1987) 3251–3259.Google Scholar
  129. 125.
    Sakuda, S., Isogai, A., Matsumoto, S., and Suzuki, A., Search for microbial insect growth regulators. II. Allosamidin, a novel insect chitinase inhibitor. J. Antibiot.40 (1987) 296–300.PubMedGoogle Scholar
  130. 126.
    Sakuda, S., Isogai, A., Matsumoto, S., Suzuki, A., and Koseki, K., The structure of allosamidin a novel insect chitinase inhibitor, produced byStreptomyces sp. Tetrahedrom Lett.27 (1986) 2475–2478.CrossRefGoogle Scholar
  131. 127.
    Sakuda, S., Isogai, A., Matsumoto, S., Suzuki, A., Koseki, K., Kodama, H., and Yamada, Y., Absolute configuration of allosamizoline, an aminocyclitol derivative of the chitinase inhibitor allosamidin. Agric. Biol. Chem.52 (1988) 1615–1617.Google Scholar
  132. 128.
    Sakuda, S., Nishimoto, Y., Ohi, M., Watanabe, M., Takayama, S., Isogai, A., and Yamada, Y., Ellects of demethylallosamidin, a potent yeast chitinase inhibitor, on the cell division of yeast. Agric. Biol. Chem.54 (1990) 1333–1335.Google Scholar
  133. 129.
    Samac, D. A., Hironaka, C. M., Yallaly, P. E., and Shah, D. M., Isolation and characterization of the genes encoding basic and acidic chitinase inArabidopsis thaliana. Pl. Physiol.93 (1990) 907–914.Google Scholar
  134. 130.
    Schlumbaum, A., and Boller, T., Translocation of the signal for systemic induction of chitinase in infected cucumber. Experientia44 (1988) 459.CrossRefPubMedGoogle Scholar
  135. 131.
    Schlumbaum, A., Mauch, F., Vögeli, U., and Boller, T., Plant chitinases are potent inhibitors of fungal growth. Nature324 (1986) 365–367.CrossRefGoogle Scholar
  136. 132.
    Shapira, R., Ordentlich, A., Chet, I., and Oppenheim, A. B., Control of plant diseases by chitinase expressed from cloned DNA inEscherichia coli. Phytopathology79 (1989) 1246–1249.Google Scholar
  137. 133.
    Shinshi, H., Mohnen, D., and Meins F. Jr, Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc. natl Acad. Sci. USA84 (1987) 89–93.Google Scholar
  138. 134.
    Shinshi, H., Neuhaus, J. M., Ryals, J., and Meins F. Jr, Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Pl. molec. Biol.14 (1990) 357–368.CrossRefGoogle Scholar
  139. 134b.
    Smith, J. J., and Raikhel, N. V., Nucleotide sequences of cDNA clones encoding wheat germ agglutinin isolectins A and D. Pl. molec. Biol.13 (1989) 601–603.CrossRefGoogle Scholar
  140. 135.
    Somers, P. J. B., Yao, R. C., Doolin, L. E., McGowan, M. J., Fukuda, D. S., and Mynderse, J. S., Method for the detection and quantification of chitinase inhibitors in fermentation broths; isolation and insect life cycle effect of A82516. J. Antibiot.40 (1987) 1751–1756.PubMedGoogle Scholar
  141. 136.
    Spanu, P., Boller, T., Ludwig, A., Wiemken, A., Faccio, A., and Bonfante-Fasolo, P., Chitinase in roots of mycorrhizalAllium porrum: regulation and localization. Planta177 (1989) 447–455.CrossRefGoogle Scholar
  142. 137.
    Spindler, K. D., and Buchholz, F., Partial characterization of chitin degrading enzymes from two euphausiids,Euphasia superba andMeganyctiphanes norvegica. Polar Biol.9 (1988) 115–122.CrossRefGoogle Scholar
  143. 138.
    Spindler-Barth, M., Shaaya, E., and Spindler, K. D., The level of chitinolytic enzymes and ecdysteroids during the larval-pupal development inEphestia cautella and their modifications by a juvenile hormone analogue. Insect Biochem.16 (1986) 187–190.CrossRefGoogle Scholar
  144. 139.
    Srivastava, A. K., Defago, G., and Boller, T., Secretion of a chitinase byAphanocladium album, a hyperparasite of wheat rust. Experientia41 (1985) 1612–1613.CrossRefPubMedGoogle Scholar
  145. 139b.
    Stark, M. J. R., Mileham, A. J., Romanos, M. A., and Boyd, A., Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeastKluyveromyces lactis. Nucl. Acids Res.12 (1984), 6011–6030.PubMedGoogle Scholar
  146. 140.
    Swegle, M., Huang, J. K., Lee, G., and Muthukrishnan, S., Identification of an endochitinase cDNA from barley aleurone cells. Pl. molec. Biol.12 (1989) 403–412.CrossRefGoogle Scholar
  147. 141.
    Takayanagi, T., Ajisaka, K., Takiguchi, Y., and Shimahara, K., Isolation and characterization of thermostable chitinases fromBacillus licheniformis X-7 u. Biochim. biophys. Acta1078 (1991) 404–410.PubMedGoogle Scholar
  148. 142.
    Toppan, A., and Roby, D., Activité chitinasique de plantes de melon infectées parColletrichum lagenarium ou traités par l'éthylène. Agronomie2 (1982) 829–834.Google Scholar
  149. 143.
    Trudel, J., and Asselin, A., Detection of chitinase activity after polyacrylamide gel electrophoresis. Analyt. Biochem.178 (1989) 362–366.CrossRefPubMedGoogle Scholar
  150. 144.
    Trudel, J., Audy, P., and Asselin, A., Electrophoretic forms of chitinase activity in Xanthi-nc tobacco, healthy and infected with tobacco mosaic virus. Molec. Pl.-Microbe Interact.2 (1989) 315–324.Google Scholar
  151. 145.
    Tuzun, S., Rao, M. N., Vogeli, U., Schardl, C. L., and Kuc, J., Induced systemic resistance to blue mold: early induction and accumulation of β-1,3-glucanases, chitinases, and other pathogenesis-related proteins (b-proteins) in immunized tobacco. Phytopathology79 (1989) 979–983.Google Scholar
  152. 146.
    Usui, T., Hayachi, Y., Nanjo, F., Sakai, K., and Ishido, Y., Transglycosylation reaction of a chitinase purified fromNocardia orientalis. Biochim. biophys. Acta923 (1987) 302–309.PubMedGoogle Scholar
  153. 147.
    Usui, T., Hayashi, Y., Nanjo, F., and Ishido, Y., Enzymatic synthesis of p-nitrophenyl N,N′, N′', N′'', N′'''-pentaacetyl-β-chitopentaoside in water methanol system; significance as a substrate for lysozyme assay. Biochim. biophys. Acta953 (1988) 179–184.PubMedGoogle Scholar
  154. 148.
    Usui, T., and Matsui, H., Lysozyme-mediated p-nitrophenyl penta N-acetyl-β-chitopentaoside production in aqueous-dimethylsulfoxide solvent system, as a substrate for a lysozyme assay. Agric. Biol. Chem.53 (1989) 383–388.Google Scholar
  155. 149.
    Vasseur, V., Arigoni, F., Andersen, H., Defago, G., Bompeix, G., and Seng, J. M., Isolation and characterization ofAphanocladium-album chitinase-overproducing mutants. J. gen. Microbiol.136 (1990) 2561–2567.Google Scholar
  156. 150.
    Verburg, J. G., and Huynh, Q. K., Purification and characterization of an antifungal chitinase fromArabidopsis thaliana. Pl. Physiol.95 (1991) 450–455.Google Scholar
  157. 151.
    Vögeli, U., Meins, F. Jr, and Boller, T., Co-ordinated regulation of chitinase and β-1,3-glucanase in bean leaves. Planta174 (1988) 364–372.CrossRefGoogle Scholar
  158. 152.
    Vögeli-Lange, R., Hansen-Gehri, A., Boller, T., and Meins, F. Jr, Induction of the defense-related glucanohydrolases, β-1,3-glucanase and chitinase, by tobacco mosaic virus infection of tobacco leaves. Pl. Sci.54 (1988) 171–176.CrossRefGoogle Scholar
  159. 153.
    Voisey, C. R., and Slusarenko, A. J., Chitinase mRNA and enzyme activity inPhaseolus vulgaris (L.) increase more rapidly in response to avirulent than to virulent cells ofPseudomonas syringae pv.phaseolicola. Physiol. molec. Pl. Path.35 (1989) 403–412.CrossRefGoogle Scholar
  160. 154.
    Vyas, P., and Deshpauche, M. V., Chitinase production byMyrothecium verrucaria and its significance for fungal mycelia degradation. J. gen. appl. Microbiol.35 (1989) 343–350.Google Scholar
  161. 155.
    Wadsworth, S. A., and Zikakis, J. P., Chitinase from soybean seeds: purification and some properties of the enzyme system. J. agric. Fd Chem.32 (1984) 1284–1288.CrossRefGoogle Scholar
  162. 156.
    Watanabe, T., Suzuki, K., Oyanagi, W., Ohnishi, K., and Tanaka, H., Gene-cloning of chitinase A1 formBacillus circulans WL-12 revealed its evolutionary relationship toSerratia chitinase and to type III homology units of fibronectin. J. biol. Chem.265 (1990) 15659–15665.PubMedGoogle Scholar
  163. 157.
    Watanabe, T., Oyanagi, W., Suzuki, K., and Tanaka, H., Chitinase system ofBacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bact.172 (1990) 4017–4022.PubMedGoogle Scholar
  164. 158.
    Wood, W. A., and Kellogg, S. T., Bionass Pt B, lignin, pectin and chitin. Meth. Enzymol.161 (1988) 403–530.Google Scholar
  165. 159.
    Wortman, A. T., Somerville, C. C., and Colwell, R. R., Chitinase determinants ofVibrio vulnicius: gene cloning and applications of a chitinase probe. Appl. envir. Microbiol.52 (1986) 142–145.Google Scholar
  166. 160.
    Wright, D. A., and Smucker, R. A., Ionic requirements for chitinase/ chitobiase activity in the oyster,Crassostrea virginica. Comp. Biochem. Physiol. Pt A84 (1986) 495–497.CrossRefGoogle Scholar
  167. 161.
    Wynne, E. C., and Pemberton, J. M., Cloning of a gene cluster fromCellvibrio mixtus which codes for cellulase, chitinase, amylase, and pectinase. Appl. envir. Microbiol.52 (1986) 1362–1367Google Scholar
  168. 162.
    Yabuki, M., Mizushina, K., Amatatsu, T., Ando, A., Jujii, T., Shimada, M., and Yamashita, M., Purification and characterization of chitinase and chitobiase produced byAeromonas hydrophila subsp,anaerogenes A52. J. gen. apll. Microbiol.32 (1986) 25–38.Google Scholar
  169. 163.
    Young, M. E., Bell, R. L., and Carroad, P. A., Kinetics of chitinase production. II. Relationship between bacterial growth, chitin hydrolysis and enzyme synthesis. Biotechnol. Bioeng.27 (1985) 776–780.CrossRefGoogle Scholar
  170. 164.
    Zhu, Q., and Lamb, C. J., Isotation and characterization of a rice gene encoding a basic chitinase. Molec. gen. Genet.226 (1991) 289–296.CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1992

Authors and Affiliations

  • J. Flach
    • 1
  • P. -E. Pilet
    • 1
  • P. Jollès
    • 2
  1. 1.Institut de Biologie et de Physiologie Végétale de l'Université de LausanneLausanneSwitzerland
  2. 2.Laboratoire des Protéines, Unité associée CNRS 1188Université de Paris VParis Cedex 06France

Personalised recommendations