Skip to main content
Log in

Geometrical methods in the analysis of ordinary differential equations

Introduction to non-linear mechanics

  • Published:
Applied Scientific Research, Section A Aims and scope Submit manuscript

Summary

In several fields of engineering research, particularly in the study of vibrations, electrical circuits and in some problems of fluid mechanics, approximations which lead to linear differential equations are proving inadequate. This circumstance is focussing the attention of research workers and engineers on non-linear problems. This article gives an account, without proofs, but with literature references, of methods for the qualitative integration of non-linear ordinary differential equations of the first order, i.e. for the determination of the pattern of the integral curves of such equations. The use of such geometrical methods becomes necessary in cases when the equation cannot be integrated in closed form. Simple and complex patterns associated with singular points are discussed, and criteria for their classification are given. A method of determining the asymptotic behaviour of the family of solutions is given, and criteria for the existence of closed curves in the family of solutions, as well as the occurrence of limit cycles, are discussed. A brief discussion of the Kronecker index and of the mutual relation between several singular points is added. The text is illustrated with several examples selected from the fields of vibration, compressible fluid flow and electrical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronow, A. A. and C. E. Chaikin, Theory of oscillations, ed. under dir. of S. Lefschetz, Princeton University Press, New Jersey, 1949.

    Google Scholar 

  2. Bendixon, I., Sur les courbes définies par des équations différentielles, Acta math.24 (1900).

  3. Bieberbach, L., Theorie der Differenzialgleichungen, 3 ed., Springer, Berlin (1926). (Also: First American Edition, Dover Publ. Inc., New York).

    Google Scholar 

  4. Collatz, L., Numerische Behandlung von Differenzialgleichungen, Springer, Berlin, 1951.

    Google Scholar 

  5. Courant, R., Differential and integral calculus, Blackie & Son, London, 1944.

    Google Scholar 

  6. Courant, R., and H. Robbins, What is mathematics?. Oxford University Press, New York, 1941.

    Google Scholar 

  7. Frommer, M., Die Integralkurven einer gewöhnlichen Differenzialgleichung in der Umgebung rationaler Unbestimmtheitsstellen, Math. Ann.99 (1928) 222.

    Article  MathSciNet  Google Scholar 

  8. Frommer, M., Ueber das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmtheitsstellen, Math. Ann.109 (1934) 395.

    Article  MathSciNet  Google Scholar 

  9. Golomb, M. and M. Shanks, Elements of ordinary differential equations, McGraw-Hill Book Co., New York, 1950.

    Google Scholar 

  10. Hurewicz, W., Ordinary differential equations in the real domain with emphasis on geometric methods, Brown University, Providence, R.I., 1943.

    Google Scholar 

  11. Kamke, E., Differenzialgleichungen reeller Funktionen, Akad. Verlagsges., Leipzig, 1930.

    Google Scholar 

  12. Kamke, E., Ueber die partielle Differenzialgleichung\(f(x,y)\frac{{\partial z}}{{\partial x}} + g(x,y)\frac{{\partial z}}{{\partial y}} = h(x,y),\) I & II, Math. Zschrift,41 (1936) 56;42 (1937) 287.

    Article  Google Scholar 

  13. Kármán, Th. von, The engineer grapples with nonlinear problems, Bull. amer. Math. Soc.,46 (1940) 615.

    Google Scholar 

  14. Kestin, J. and J. A. Owczarek, Critical flow through convergent-divergent nozzles. Letters to the Editor, Aircr. Engng23 (1951) 305.

    Google Scholar 

  15. Kestin, J. and S. K. Zaremba, Patterns of one-dimensional high-speed flows of gases I. Variable area and friction. To be published.

  16. Kestin, J. and S. K. Zaremba, Adiabatic one-dimensional flow of a perfect gas through a rotating tube of uniform cross-section. To be published.

  17. Liapounoff, A., Problème général de la stabilité du mouvement. Annales Fac. Sci., Toulouse, (2)9 (1907), also Princeton University Press, 1949.

  18. Minorsky, N., Introduction to non-linear mechanics, Edwards, Ann Arbor, 1947.

    Google Scholar 

  19. Perron, O., Ueber die Gestalt der Integralkurven einer Differenzialgleichung erster Ordnung in der Umgebung eines singulären Punktes, I & II, Math. Z.15 (1922) 121;16 (1923) 273.

    Article  MathSciNet  Google Scholar 

  20. Poincaré, H., Sur les courbes définies par une équation différentielle, J. Math. pur. appl. (3)7 (1881) 375; (3)8 (1882) 251; (4)1 (1885) 167; (4)2 (1886) 151 (also in Oeuvres, I).

    Google Scholar 

  21. Poincaré, H., Méthodes nouvelles de la méchanique céleste, I, Paris, Gauthier-Villars, 1892.

    Google Scholar 

  22. Shapiro, A. H. and W. R. Hawthorne, The mechanics and thermodynamics of steady one-dimensional gas flow, J. appl. Mech.14 (1947), A 317.

    Google Scholar 

  23. Stoker, J. J., Non-linear vibrations in mechanical and electrical systems. Interscience Publ. Inc., New York, 1950.

    Google Scholar 

  24. Willers, Fr. A., Methoden der praktischen Analysis, Göschen, de Gruyter, Berlin, 1950. Also transl. by R. T. Beyer. Dover Publ. Inc., New York, 1948.

    Google Scholar 

  25. Zaremba, S. K., Sur la variation de la tangente à une courbe fermée simple de Jordan, Ann. Soc. Polon. Math.12 (1933) 55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kestin, J., Zaremba, S.K. Geometrical methods in the analysis of ordinary differential equations. Appl. Sci. Res. 3, 149–189 (1954). https://doi.org/10.1007/BF02123900

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02123900

Keywords

Navigation