Geometric methods in the study of irregularities of distribution

Abstract

Letν be a signed measure on Ed with νEd=0 and ¦ν¦Ed<∞. DefineD s(ν) as sup ¦νH¦ whereH is an open halfspace. Using integral and metric geometric techniques results are proved which imply theorems such as the following.Theorem A. Letν be supported by a finite pointsetp i. ThenD s(ν)>c d1/δ 2)1/2{∑ i(νp i)2}1/2 whereδ 1 is the minimum distance between two distinctp i, andδ 2 is the maximum distance. The numberc d is an absolute dimensional constant. (The number .05 can be chosen forc 2 in Theorem A.)Theorem B. LetD be a disk of unit area in the planeE 2, andp 1,p 2,...,p n be a set of points lying inD. If m if the usual area measure restricted toD, while γnP i=1/n defines an atomic measure γn, then independently of γn,nD s(mγ n)≥ .0335n 1/4. Theorem B gives an improved solution to the Roth “disk segment problem” as described by Beck and Chen. Recent work by Beck shows thatnD s(m −γ n)≥cn 1/4(logn)−7/2.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    R. Alexander: On the sum of distances betweenn points on a sphere,Acta Math. Acad. Sci. Hungar.,23 (1972), 443–448.

    Article  Google Scholar 

  2. [2]

    R. Alexander: Generalized sums of distances,Pacific Jour. Math.,56 (1975), 297–304.

    Google Scholar 

  3. [3]

    R. Alexander: On the sum of distances betweenn points on a sphere. II,Acta Math. Acad. Sci. Hungar.,29 (1977), 317–320.

    Article  Google Scholar 

  4. [4]

    R. Alexander: Metric averaging in Euclidean and Hilbert spaces,Pacific Jour. Math.,85 (1979), 1–9.

    Google Scholar 

  5. [5]

    R. Alexander, andK. B. Stolarsky: Extremal problems of distance geometry related to energy integrals,Trans. Amer. Soc.,193 (1973), 1–31.

    Google Scholar 

  6. [6]

    J. Beck: Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete geometry,Mathematica,31 (1984), 33–41.

    Google Scholar 

  7. [7]

    J. Beck, andW. W. L. Chen:Irregularities of distribution, Cambridge Tracts in Mathematics,89, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  8. [8]

    L. Kuipers, andH. Niederreiter:Uniform distribution of sequences, John Wiley, New York,1974.

    Google Scholar 

  9. [9]

    K. F. Roth: On irregularities of distribution,Mathematica,1 (1954), 73–79.

    Google Scholar 

  10. [10]

    L. A. Santaló:Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications,1, Addison-Wesley, Reading, Mass., 1976.

    Google Scholar 

  11. [11]

    I. J. Schoenberg: On certain metric spaces arising from Euclidean spaces by change of metric and their embedding in Hilbert space,Ann. of Math.,38 (1937), 787–793.

    MathSciNet  Google Scholar 

  12. [12]

    W. M. Schmidt: Irregularities of distribution. IV,Invent. Math.,7 (1969), 55–82.

    Article  Google Scholar 

  13. [13]

    W. M. Schmidt: Irregularities of distribution. VII,Acta Arith.,21 (1972), 45–50.

    Google Scholar 

  14. [14]

    K. B. Stolarsky: Sums of distances between points on a sphere,Proc. Amer. Math Soc.,35 (1972), 547–549.

    Google Scholar 

  15. [15]

    K. B. Stolarsky: Sums of distances between points on a sphere. II,Proc. Amer. Math. Soc.,41 (1973), 575–582.

    Google Scholar 

  16. [16]

    K. B. Stolarsky: Spherical distributions ofn points with maximal distance sums are well spaced,Proc. Amer. Math. Soc.,48 (1975), 203–206.

    Google Scholar 

  17. [17]

    K. B.Stolarsky:Discrepancy and sums of distances between points of a metric space, The geometry of metric and linear spaces, Ed. L. M. Kelly, Springer-Verlag,1975, 44–55.

  18. [18]

    H. Weyl: Über die Gleichverteilung von Zahlen mod. Eins,Math. Ann.,77 (1916), 313–352.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alexander, R. Geometric methods in the study of irregularities of distribution. Combinatorica 10, 115–136 (1990). https://doi.org/10.1007/BF02123006

Download citation

AMS subject classification (1980)

  • 52 A 22
  • 10 K 30