On a lattice point problem of L. Moser II


In this paper we complete the proof of the following conjecture of L. Moser: Any convex region of arean can be placed on the plane so as to cover ≧n+f(n) lattice points, wheref(n) →∞.

This is a preview of subscription content, access via your institution.


  1. [1]

    J. Beck, On a lattice point problem of L. Moser, I,Combinatorica 8 (1988), 21–47.

    Google Scholar 

  2. [2]

    W. Blaschke,Kreis und Kugel, Leipzig: Gröschen 1916, New York: Chelsea 1949, Berlin: de Gruyter 1956.

    Google Scholar 

  3. [3]

    W. Blaschke,Differentialgeometrie II, Affine Differentialgeometrie, Berlin: Springer 1923.

    Google Scholar 

  4. [4]

    L. Fejes Tóth,Lagerungen in der Ebene, auf der Kugel und im Raum, Berlin: Springer 1953, 1972.

    Google Scholar 

  5. [5]

    D. Koutroufiotis, On Blaschke's rolling theorem,Arch. Math. 23 (1972), 655–660.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beck, J. On a lattice point problem of L. Moser II. Combinatorica 8, 159–176 (1988). https://doi.org/10.1007/BF02122797

Download citation

AMS subject classification

  • 10 J 25
  • 10 K 30