Abstract
In this paper we complete the proof of the following conjecture of L. Moser: Any convex region of arean can be placed on the plane so as to cover ≧n+f(n) lattice points, wheref(n) →∞.
This is a preview of subscription content, access via your institution.
References
- [1]
J. Beck, On a lattice point problem of L. Moser, I,Combinatorica 8 (1988), 21–47.
- [2]
W. Blaschke,Kreis und Kugel, Leipzig: Gröschen 1916, New York: Chelsea 1949, Berlin: de Gruyter 1956.
- [3]
W. Blaschke,Differentialgeometrie II, Affine Differentialgeometrie, Berlin: Springer 1923.
- [4]
L. Fejes Tóth,Lagerungen in der Ebene, auf der Kugel und im Raum, Berlin: Springer 1953, 1972.
- [5]
D. Koutroufiotis, On Blaschke's rolling theorem,Arch. Math. 23 (1972), 655–660.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Beck, J. On a lattice point problem of L. Moser II. Combinatorica 8, 159–176 (1988). https://doi.org/10.1007/BF02122797
Received:
Revised:
Issue Date:
AMS subject classification
- 10 J 25
- 10 K 30