Weight distribution of translates of MDS codes


The following is a particular case of a theorem of Delsarte: the weight distribution of a translate of an MDS code is uniquely determined by its firstn−k terms. Here an explicit formula is derived from a completely different approach.

This is a preview of subscription content, access via your institution.


  1. [1]

    E. R. Berlekamp,Algebraic Coding Theory, McGraw-Hill, New York (1968).

    Google Scholar 

  2. [2]

    P. G. Bonneau, Un Renforcement de la Formule d'Enumération des Poids des codes optimaux,C. R. Acad. Sc. Paris, t. 296 Série I (1983), 863, 4.

    Google Scholar 

  3. [3]

    P. G. Bonneau,Codes et Combinatoire (thesis), Université Pierre et Marie Curie, Paris (1984).

    Google Scholar 

  4. [4]

    L. Comtet,Analyse Combinatoire (tome second) Presses Universitaires de France, Paris (1970).

    Google Scholar 

  5. [5]

    Ph. Delsarte, Four Fondamental Parameters of a Code and Their Combinatorial Significance,Info. and Control,23 (1973), 407–438.

    Google Scholar 

  6. [6]

    J. Denes andA. D. Keedwell,Latin Squares and their Applications, Academic Press, New York (1974).

    Google Scholar 

  7. [7]

    W. Heise andP. Quattrocchi,Informations- und Codierungstheorie, Springer-Verlag, Berlin, Heidelberg New York (1983).

    Google Scholar 

  8. [8]

    A. Marguinaud, Codes a Distance Maximale,Revue du Cethedec,22 (1970), 33–46.

    Google Scholar 

  9. [9]

    F. J. Mac Williams andN. J. A. Sloane,The Theory of Error-Correcting codes (third printing), North Holland-Amsterdam, New York, Oxford (1981).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bonneau, P.G. Weight distribution of translates of MDS codes. Combinatorica 10, 103–105 (1990). https://doi.org/10.1007/BF02122700

Download citation

AMS subject classification (1980)

  • 94B60