, Volume 10, Issue 1, pp 103–105 | Cite as

Weight distribution of translates of MDS codes

  • P. G. Bonneau


The following is a particular case of a theorem of Delsarte: the weight distribution of a translate of an MDS code is uniquely determined by its firstn−k terms. Here an explicit formula is derived from a completely different approach.

AMS subject classification (1980)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. R. Berlekamp,Algebraic Coding Theory, McGraw-Hill, New York (1968).Google Scholar
  2. [2]
    P. G. Bonneau, Un Renforcement de la Formule d'Enumération des Poids des codes optimaux,C. R. Acad. Sc. Paris, t. 296 Série I (1983), 863, 4.Google Scholar
  3. [3]
    P. G. Bonneau,Codes et Combinatoire (thesis), Université Pierre et Marie Curie, Paris (1984).Google Scholar
  4. [4]
    L. Comtet,Analyse Combinatoire (tome second) Presses Universitaires de France, Paris (1970).Google Scholar
  5. [5]
    Ph. Delsarte, Four Fondamental Parameters of a Code and Their Combinatorial Significance,Info. and Control,23 (1973), 407–438.Google Scholar
  6. [6]
    J. Denes andA. D. Keedwell,Latin Squares and their Applications, Academic Press, New York (1974).Google Scholar
  7. [7]
    W. Heise andP. Quattrocchi,Informations- und Codierungstheorie, Springer-Verlag, Berlin, Heidelberg New York (1983).Google Scholar
  8. [8]
    A. Marguinaud, Codes a Distance Maximale,Revue du Cethedec,22 (1970), 33–46.Google Scholar
  9. [9]
    F. J. Mac Williams andN. J. A. Sloane,The Theory of Error-Correcting codes (third printing), North Holland-Amsterdam, New York, Oxford (1981).Google Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • P. G. Bonneau
    • 1
  1. 1.WimereuseFrance

Personalised recommendations