A new lower bound for Snake-in-the-Box Codes


In this paper we give a new lower bound on the length of Snake-in-the-Box Codes, i.e., induced cycles in thed-dmensional cube. The bound is a linear function of the number of vertices of the cube and improves the boundc·2d/d, wherec is a constant, proved by Danzer and Klee.

This is a preview of subscription content, access via your institution.


  1. [1]

    H. L. Abbott, A Note on the Snake-in-the-Box Problem,unpublished manuscript, Some Problems in Combinatorial Analysis, Ph. D. thesis, University of Alberta, Edmonton, Canada, (1965).

    Google Scholar 

  2. [2]

    H. L.Abbott and M.Katchalski, On the Snake in the Box Problem, to appear inJ. Combinatorial Theory.

  3. [3]

    L. Danzer andV. K. Lee, Lentgh of Snakes inBoxes,J. Combinatorial Theory 2 (1967), 258–265.

    Google Scholar 

  4. [4]

    D. W. Davies, Longest “Separated” Paths and Loops in anN Cube,IEEE Trans. Electronic Computers 14 (1965), 261.

    Google Scholar 

  5. [5]

    K. Deimer, A New Upper Bound for the Length of Snakes,Combinatorica 5 (2) (1985), 109–120.

    Google Scholar 

  6. [6]

    A. A. Evdokimov, The maximal length of a chanin the unitn-dimensional cube.Mat. Zametki 6 (1969), 309–319. English translation inMath. Nmes 6 (1969), 642–648.

    Google Scholar 

  7. [7]

    A. A.Evdokimov, The maximal length of a chain inn-dimensional cube and some

  8. [8]

    S. Even, Snake-in-the-Box Codes,IEEE Trans. Electronic Computers 12 (1963), 18.

    Google Scholar 

  9. [9]

    V. V. Glagolev andA. A. Evdokimov, The minimal coloring of a certaing infinite graph,Diskret. Analiz 17 (1970), 9–17.

    Google Scholar 

  10. [10]

    W. H. Kautz, Unit-Distance Error-Checking Codes,IRE trans. Electronic Computers 3 (1958), 179–180.

    Google Scholar 

  11. [11]

    C. Ramanujacharyulu andV. V. Menon, A Note on the Snake-in-the-Box Problem,Publ. Inst. Statist. Univ. Paris 13 (1964), 131–135.

    Google Scholar 

  12. [12]

    R. C. Singleton, Generalized Snake-in-the-Box Codes,IEEE Trans. Electronic Computers 15 (1966), 596–602.

    Google Scholar 

  13. [13]

    F. I.Solov'jeva, Upper bound for the length of a cycle in ann-dimensional unit cube,Methods of Diskrete Analiz 45 (1987).

  14. [14]

    Ju. I. Vasil'ev, On the Length of a Cycle in ann-Dimensional Unit Cube,Soviet Math. Dokl. 4 (1963), 160–163 (transl. fromDokl. Acad. Nauk SSSR 184 (1963), 753–756).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wojciechowski, J. A new lower bound for Snake-in-the-Box Codes. Combinatorica 9, 91–99 (1989). https://doi.org/10.1007/BF02122688

Download citation

AMS subject classification (1980)

  • 05 C 35
  • 94 B 25