A new lower bound for Snake-in-the-Box Codes

Abstract

In this paper we give a new lower bound on the length of Snake-in-the-Box Codes, i.e., induced cycles in thed-dmensional cube. The bound is a linear function of the number of vertices of the cube and improves the boundc·2d/d, wherec is a constant, proved by Danzer and Klee.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    H. L. Abbott, A Note on the Snake-in-the-Box Problem,unpublished manuscript, Some Problems in Combinatorial Analysis, Ph. D. thesis, University of Alberta, Edmonton, Canada, (1965).

    Google Scholar 

  2. [2]

    H. L.Abbott and M.Katchalski, On the Snake in the Box Problem, to appear inJ. Combinatorial Theory.

  3. [3]

    L. Danzer andV. K. Lee, Lentgh of Snakes inBoxes,J. Combinatorial Theory 2 (1967), 258–265.

    Google Scholar 

  4. [4]

    D. W. Davies, Longest “Separated” Paths and Loops in anN Cube,IEEE Trans. Electronic Computers 14 (1965), 261.

    Google Scholar 

  5. [5]

    K. Deimer, A New Upper Bound for the Length of Snakes,Combinatorica 5 (2) (1985), 109–120.

    Google Scholar 

  6. [6]

    A. A. Evdokimov, The maximal length of a chanin the unitn-dimensional cube.Mat. Zametki 6 (1969), 309–319. English translation inMath. Nmes 6 (1969), 642–648.

    Google Scholar 

  7. [7]

    A. A.Evdokimov, The maximal length of a chain inn-dimensional cube and some

  8. [8]

    S. Even, Snake-in-the-Box Codes,IEEE Trans. Electronic Computers 12 (1963), 18.

    Google Scholar 

  9. [9]

    V. V. Glagolev andA. A. Evdokimov, The minimal coloring of a certaing infinite graph,Diskret. Analiz 17 (1970), 9–17.

    Google Scholar 

  10. [10]

    W. H. Kautz, Unit-Distance Error-Checking Codes,IRE trans. Electronic Computers 3 (1958), 179–180.

    Google Scholar 

  11. [11]

    C. Ramanujacharyulu andV. V. Menon, A Note on the Snake-in-the-Box Problem,Publ. Inst. Statist. Univ. Paris 13 (1964), 131–135.

    Google Scholar 

  12. [12]

    R. C. Singleton, Generalized Snake-in-the-Box Codes,IEEE Trans. Electronic Computers 15 (1966), 596–602.

    Google Scholar 

  13. [13]

    F. I.Solov'jeva, Upper bound for the length of a cycle in ann-dimensional unit cube,Methods of Diskrete Analiz 45 (1987).

  14. [14]

    Ju. I. Vasil'ev, On the Length of a Cycle in ann-Dimensional Unit Cube,Soviet Math. Dokl. 4 (1963), 160–163 (transl. fromDokl. Acad. Nauk SSSR 184 (1963), 753–756).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wojciechowski, J. A new lower bound for Snake-in-the-Box Codes. Combinatorica 9, 91–99 (1989). https://doi.org/10.1007/BF02122688

Download citation

AMS subject classification (1980)

  • 05 C 35
  • 94 B 25