On 3-pushdown graphs with large separators

Abstract

For an integers letl s (n), thes-iterated logarithm function, be defined inductively:l 0 (n)=n,l s+1 (n)=log2 (l 2 (n)) fors≧0. We show that for every fixeds and alln large enough, there is ann-vertex 3-pushdown graph whose smallest separator contains at leastΩ(n/l s (n)) vertices.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    B. S.Baker (1983), Approximation algorithms for NP-complete problems, inProc. 24th IEEE Annual Symp. on the Foundations of Computer Science, 265–273.

  2. [2]

    B. Bollobás (1978),Extremal Graph Theory, Prentice Hall, London, New York, pp. xx.

    Google Scholar 

  3. [3]

    B. Bollobás (1985),Random Graphs, Prentice Hall, London, New York, pp. 11.

    Google Scholar 

  4. [4]

    J.Buss and O.Shor (1984), On the pagenumber of planar graphs, inProc. 16th ACM Symp. on the Theory of Computing, 98–101.

  5. [5]

    F.Chung, F. T.Leighton and A.Rosenberg (1984),Embedding graphs in books: A layout problem with applications to VLSI design, manuscript.

  6. [6]

    Z.Galil, R.Kannan and E.Szemerédi, On nontrivial separators fork-page graphs and simulations by nondeterministic one-tape Turing machines, to appear inJCSS.

  7. [7]

    L.Heath (1984), Embedding planar graphs in seven pages, inProc. 25th IEEE Symp. on the Foundations of Computer Science, 74–83.

  8. [8]

    J. Hopcroft, W. Paul andL. Valiant (1977), On time versus space,J. Assoc. Comput. Math. 24, 332–337.

    Google Scholar 

  9. [9]

    R. Kannan (1985), Unravelingk page graphs,Info. & Control 66, 1–5.

    Google Scholar 

  10. [10]

    R. J. Lipton andR. E. Tarjan (1980), Applications of a planar graph separator theorem,SIAM J. Comput. 9, No. 3, 615–627.

    Article  Google Scholar 

  11. [11]

    W. Maass (1985), Combinatorial lower bound arguments for deterministic and non-deterministic Turning machines,Trans. Amer. Math. Soc. 292, No.2, 675–693.

    Google Scholar 

  12. [12]

    W. I.Paul, N.Pippenger, E.Szemerédi and W. T.Trotter (1983), On determinism versus non-determinism, inProc. 24th Symp. on the Foundations of Computer Science, 429–238.

  13. [13]

    A. L. Rosenberg (1983), The Diogenes approach to testable fault-tolerant arrays of processors,IEEE Trans. Comput. C-32, pp. 902–910.

    Google Scholar 

  14. [14]

    M. M. Syslo (1979), Characterisations of outerplanar graphs,Discrete Math. 26, 47–53.

    Article  Google Scholar 

  15. [15]

    L. G. Valiant, (1976), Graph-theoretic properties in computational complexity,J. Comput. System Sci. 13, 278–285.

    Google Scholar 

  16. [16]

    M.Yannakakis (1986), Four pages are necessary and sufficient, inProc. 18th ACM Symp. on the Theory of Computing, 104–108.

Download references

Author information

Affiliations

Authors

Additional information

The work of the first author was supported in part by NSF Grants MCS-83-03139, DCR-85-11713 and CCR-86-05353.

The work of the second author was supported in part by NSF Grants MCS-84-16190.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Galil, Z., Kannan, R. & Szemerédi, E. On 3-pushdown graphs with large separators. Combinatorica 9, 9–19 (1989). https://doi.org/10.1007/BF02122679

Download citation

AMS subject classification (1980)

  • 05C35
  • 68C25
  • 68C40