The chromatic number of random graphs

Abstract

For a fixed probabilityp, 0<p<1, almost every random graphG n,p has chromatic number

$$\left( {\frac{1}{2} + o(1)} \right)\log (1/(1 - p))\frac{n}{{\log n}}$$

,

This is a preview of subscription content, access via your institution.

References

  1. [1]

    K. Azuma, Weighted sums of certain dependent random variables,Tôhoku Math. J.,3 (1967), 357–367.

    Google Scholar 

  2. [2]

    B. Bollobás, The evolution of sparse graphs,in Graph Theory and Combinatorics, Proc. Cambridge Combinatorial Conf. in honour of Paul Erdős (B. Bollobás, ed.), Academic Press, London, 1984, 35–37.

    Google Scholar 

  3. [3]

    B. Bollobás,Random Graphs, Academic Press, London, 1985, xvi+447 pp.

    Google Scholar 

  4. [4]

    B. Bollobás andP. Erdős, Cliques in random graphs,Math. Proc. Cambridge Phil. Soc.,80 (1976), 419–427.

    Google Scholar 

  5. [5]

    B.Bollobás and A. G.Thomason, Random graphs of small order,in Random Graphs, Annals of Discr. Math., 1985, 47–97.

  6. [6]

    P. Erdős andJ. Spencer,Probabilistic Methods in Combinatorics, Academic Press, New York and London, 1974.

    Google Scholar 

  7. [7]

    D. Freedman, On tail probabilities for martingales,Ann. Probab.,3 (1975), 100–118.

    Google Scholar 

  8. [8]

    G. R. Grimmett andC. J. H. McDiarmid, On colouring random graphs,Math. Proc. Cambridge Phil. Soc.,77 (1975), 313–324.

    Google Scholar 

  9. [9]

    W. B. Johnson andG. Schechtman, Embeddingl mp intol n1 ,Acta Math.,150 (1983), 71–85.

    Google Scholar 

  10. [10]

    C. J. H.McDiarmid, Colouring random graphs badly,in Graph Theory and Combinatorics (R. J. Wilson, ed.), Pitman Research Notes in Mathematics,34 (1979), 76–86.

  11. [11]

    C. J. H. McDiarmid, On the chromatic forcing number of a random graph,Discrete Appl. Math.,5 (1983), 123–132.

    Google Scholar 

  12. [12]

    D. W. Matula, Expose-and-merge exploration and the chromatic number of a random graph,Combinatorica,7 (1987), 275–284.

    Google Scholar 

  13. [13]

    B. Maurey, Construction de suites symétriques,Compt. Rend. Acad. Sci. Paris 288 (1979), 679–681.

    Google Scholar 

  14. [14]

    V. D.Milman and G.Schechtman,Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, 1986, viii+156 pp.

  15. [15]

    G. Pisier, On the dimension ofl np -subspaces of Banach spaces, for 1<p<2,Trans. Amer. Math. Soc.,276 (1983), 201–211.

    Google Scholar 

  16. [16]

    E. Shamir andJ. Spencer, Sharp concentration of the chromatic number of random graphsG n,p,Combinatorica,7 (1987), 121–129.

    Google Scholar 

  17. [17]

    G. Schechtman, Random embeddings of euclidean spaces in sequence spaces,Israel J. Math.,40 (1981), 187–192.

    Google Scholar 

  18. [18]

    E. Shamir andR. Upfal, Sequential and distributed graph colouring algorithms with performance analysis in random graph spaces,J. of Algorithms 5 (1984), 488–501.

    Google Scholar 

  19. [19]

    W. F. De La Vega, On the chromatic number of sparse random graphs,in Graph Theory and Combinatorics, Proc. Cambridge Combinatorial Conf. in honour of Paul Erdős (B. Bollobás, ed., Academic Press, London, 1984, 321–328.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bollobás, B. The chromatic number of random graphs. Combinatorica 8, 49–55 (1988). https://doi.org/10.1007/BF02122551

Download citation

AMS subject classification (1980)

  • 05 C 15