Skip to main content
Log in

The assay on a defined medium of the effects of β-2-thienylalanine on the growth of anaerobic bacterial isolates from phenylketonuric patients

  • Original Investigations
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Faecal samples were taken from three diet-managed phenylketonuric children to determine effects ofβ-2-thienylalanine (β-2-t) on indigenous bacteria. From sample swabs, 127 anaerobes were identified and tested forβ-2-t inhibition on a phenylalanine (Phe)-free medium, Anaerobe Inhibition Test (AIT) agar. Of the isolates, 77.9% grew sufficiently to assay reactions on at least 25% of AIT plates. Using Phe-containing Columbia agar, 86.5% of the strains could be assayed. None of 28Bacteroides cultures was inhibited byβ-2-t on AIT. Of the genera,Bifidobacterium, Eubacterium, Lactobacillus, Peptostreptococcus, andPropionibacterium, no isolates which would grow on AIT were inhibited. At least one isolate of each of the generaPeptococcus, Fusobacterium, andClostridium was inhibited. Of 127 total isolates, only nine were inhibited byβ-2-t on AIT, and inhibition was abolished on Columbia agar.

Thirty-nine ‘aerobes’ were isolated from the same patients. Strains of the genera tested reacted similarly to previously tested strains from non-PKU sources. Also, anaerobically isolatedEscherichia coli were inhibited, whileStreptococcus faecalis cultures were not, confirming results on aerobically-isolated non-PKU cultures of the same species.

These studies, the first dealing withβ-2-t and anaerobic bacteria, suggest that little change in intestinal bacterial populations might be expected during in vivoβ-2-t treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attebery, H.R., Sutter, V.L., Finegold, S.M.: Effect of a partially chemically defined diet on normal human fecal flora. Am. J. Clin. Nutr.25, 1891–1398 (1972)

    Google Scholar 

  2. Beerstecher, E. Jr., Shive, W.: Biochemical transformations as determined by competitive analogue-metabolite growth inhibitions. J. Biol. Chem.164, 53–61 (1946)

    Google Scholar 

  3. Breed, R.S., Murray, E.G.D., Smith, N.R. (ed).: Bergey's Manual of Determinative Bacteriology, 7th ed., Baltimore: Williams and Wilkins 1972

    Google Scholar 

  4. Brown, K.J., Brown, P.A.: Isolation of bacteriophage-like particles from uninducedClostridium tetani cultures. Aust. J. Exp. Biol. Med. Sci.56, 139–145 (1978)

    PubMed  Google Scholar 

  5. Brown, K.J., Lines, D.R.: Differentiation of pathogenic, gram-negative, bacterial genera in the presence ofβ-2-thienylalanine. Can. J. Microbiol.22, 1673–1679 (1976)

    PubMed  Google Scholar 

  6. Brown, K.J., Lines, D.R.: Effects of changes in Mg++ ion concentration upon bacterial inhibition byβ-2-thienylalanine in defined media. Aust. J. Exp. Biol. Med. Sci.56, 507–511 (1978)

    PubMed  Google Scholar 

  7. Brown, K.J., Elliott, R.B., Lines, D.R.: Effects of increasing Mg++ ion concentration on the PKU monitorin assay. Experientia35, 462–463 (1979)

    PubMed  Google Scholar 

  8. Brown, K.J., Tannock, G.W., Eyres, R.A., Elliott, R.B., Lines, D.R.: Colonization bySalmonella typhimurium andShigella flexneri III of the gastrointestinal tract of mice treated withβ-2-thienylalanine and streptomycin. Antonie van Leeuwenhoek J. Microbiol. Serol.45 (4), in press (1979)

  9. Bryant, M.P., Robinson, I.M.: Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol.84, 605–614 (1962)

    PubMed  Google Scholar 

  10. Caldwell, D.R., Arcand, C.: Inorganic and metalorganic growth requirements of the genusBacteroides. J. Bacteriol.120, 322–333 (1974)

    PubMed  Google Scholar 

  11. Caldwell, D.R., Bryant, M.P.: Medium without rumen fluid for non-selective enumeration and isolation of rumen bacteria. Appl. Microbiol.14, 794–801 (1966)

    PubMed  Google Scholar 

  12. Caldwell, D.R., Hudson, R.F.: Sodium, an obligate growth requirement for predominant rumen bacteria. Appl. Microbiol.27, 549–552 (1974)

    PubMed  Google Scholar 

  13. Caldwell, D.R., Kenney, M., Barton, J.S., Kelley, J.F.: Sodium and other inorganic growth requirements ofBacteroides amylophilus. J. Bacteriol.114, 782–789 (1973)

    PubMed  Google Scholar 

  14. Cattell, P.: The measurement of intelligence of infants and young children. New York: Psychological Corporation 1947

    Google Scholar 

  15. Demain, A.L.: Minimal media for quantitative studies withBacillus subtilis. J. Bacteriol.75, 517–522 (1958)

    PubMed  Google Scholar 

  16. Dittmer, K., Ellis, G., McKinnis, H. Jr., du Vigneaud, V.: The effect of amino acids on the microbial growth inhibition produced by thienylalanine. J. Biol. Chem.164, 761–771 (1946)

    Google Scholar 

  17. Doll, E.A.: Vineland Social Maturity Scale: manual of directions. Revised ed., Minneapolis: Educational Test Bureau 1965

    Google Scholar 

  18. Dorset, M.: The use of eggs as a medium for the cultivation ofBacillus tuberculosis. Am. Med. 555–556 (1902)

  19. Dowell, V.R. Jr., Hawkins, T.M. (ed).: Laboratory Methods in Anaerobic Bacteriology, CDC Laboratory Manual. Atlanta: Center for Disease Control, U.S. Department of Health, Education, and Welfare 1974

    Google Scholar 

  20. Drea, W.F.: Growth inhibition of the H37 strain of human tubercle bacilli byβ-2-thienylalanine and its prevention by phenylalanine. J. Bacteriol.56, 257–258 (1948)

    Google Scholar 

  21. Dunn, F.W., Dittmer, K.: The synthesis and microbiological properties of some peptide analogues. J. Biol. Chem.188, 263–272 (1951)

    PubMed  Google Scholar 

  22. Ellis-Pegler, R.B., Crabtree, C., Lambert, H.P.: The faecal flora of children in the United Kingdom. J. Hyg. (Camb.)75, 135–142 (1975)

    Google Scholar 

  23. Godin, C., Dolan, G.: The effects of phenylalanine analogues on the metabolism of phenylalanine in rats. Can. J. Biochem.45, 71–79 (1967)

    Google Scholar 

  24. Guthrie, R., Susi, A.: A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics32, 338–343 (1963)

    PubMed  Google Scholar 

  25. Herbeck, J.L., Bryant, M.P.: Nutritional features of the intestinal anaerobeRuminococcus bromii. Appl. Microbiol.28, 1018–1022 (1975)

    Google Scholar 

  26. Holdeman, L.V., Moore, W.E.C. (ed.).: Anaerobe Laboratory Manual. 3rd ed., Blacksburg, Virginia: V.P.I. Anaerobe Laboratory, Virginia Polytechnic Institute and State University 1975

    Google Scholar 

  27. Krips, C., Lines, D.R.: Phenylketonuria: Reduction of serum levels of phenylalanine following oral administration ofβ-2-thienylalanine. Aust. Paediatr. J.8, 318–321 (1972)

    PubMed  Google Scholar 

  28. Labbe, R.G., Duncan, C.L.: Influence of carbohydrates on growth and sporulation ofClostridium perfringens Type A. Appl. Microbiol.29, 345–351 (1975)

    PubMed  Google Scholar 

  29. Lee, I.H., Fredrickson, A.G., Tsuchiya, H.M.: Diauxic growth ofPropionibacterium shermanii. Appl. Microbiol.28, 831–835 (1974)

    PubMed  Google Scholar 

  30. Lev, M., Keudell, K.C., Milford, A.F.: Succinate as a growth factor forBacteroides melaninogenicus. J. Bacteriol.108, 175–178 (1971)

    PubMed  Google Scholar 

  31. Lines, D.R., Waisman, H.A.: Renal amino acid reabsorption in hyperphenylalaninemic monkeys infused withβ-2-thienylalanine. Proc. Soc. Exp. Biol. Med.134, 1061–1064 (1970)

    PubMed  Google Scholar 

  32. Lines, D.R., Waisman, H.A.: The inhibition of intestinal absorption of phenylalanine in the rhesus monkey. Proc. Soc. Exp. Biol. Med.135, 859–863 (1970)

    PubMed  Google Scholar 

  33. Lines, D.R., Waisman, H.A.: The effect of feedingβ-2-thienylalanine on phenylalanine metabolism in the rhesus monkey. Aust. N.Z. J. Med.3, 169–173 (1973)

    PubMed  Google Scholar 

  34. Macy, J., Probst, I., Gottschalk, G.: Evidence for cytochrome involvement in fumerate reduction and adenosine 5′-triphosphate synthesis byBacteroides fragilis grown in the presence of hemin. J. Bacteriol.123, 436–442 (1975)

    PubMed  Google Scholar 

  35. Mata, L.J., Urrutia, J.J.: Intestinal colonization of breast-fed children in a rural area of low socio-economic level. Ann. N.Y. Acad. Sci.176, 93–109 (1971)

    Google Scholar 

  36. Morishita, T., Fukada, T., Shirota, M., Yura, T.: Genetic basis of nutritional requirements inLactobacillus casei. J. Bacteriol.120, 1078–1084 (1974)

    PubMed  Google Scholar 

  37. Varel, V.H., Bryant, M.P.: Nutritional features ofBacteroides fragilis ss fragilis. Appl. Microbiol.18, 251–257 (1974)

    Google Scholar 

  38. Varel, V.H., Bryant, M.P., Holdeman, L.V., Moore, W.E.C.: Isolation of ureolyticPeptostreptococcus productus from feces using defined medium; failure of common urease tests. Appl. Microbiol.28, 594–599 (1974)

    PubMed  Google Scholar 

  39. Wapnir, R.A., Lifshitz, F.: L-phenylalanine interactions with structurally related substances at the intestinal mucosa. Biochem. Med.11, 370–375 (1974)

    PubMed  Google Scholar 

  40. Wechsler, D.: Wechsler Intelligence Scale for Children. New York: Psychological Corporation 1974

    Google Scholar 

  41. Winitz, M., Seedman, D.A., Graff, J.: Studies in metabolic nutrition employing chemically defined diets II. Effects on gut microflora populations. Am. J. Clin. Nutr.23, 546–559 (1970)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, K.J., Vesey, B.V., Tannock, G.W. et al. The assay on a defined medium of the effects of β-2-thienylalanine on the growth of anaerobic bacterial isolates from phenylketonuric patients. Med Microbiol Immunol 168, 11–24 (1980). https://doi.org/10.1007/BF02121648

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02121648

Keywords

Navigation