Radiophysics and Quantum Electronics

, Volume 21, Issue 11, pp 1087–1093 | Cite as

Linear interaction of electromagnetic waves in an inhomogeneous magnetoactive plasma

  • N. S. Bellyustin


In this paper we discuss an asymptotic method which permits one to separate the initial equations for the fields in a plane stratified plasma into two independent systems, describing waves of differing types which propagate in a single direction. The coefficients of the derived equations remain regular at points of equality between the indices of refraction of normal waves, n1=n2. The equations are used to analyze a specific type of interaction which is of current interest in connection with research on low-frequency waves in the ionosphere. A solution is found by the method of the standard system which describes the field in the interaction region; outside this region, it turns into the geometric optics solution. Wave transformation coefficients are compared with those obtained earlier by the phase integral method.


Refraction Interaction Region Asymptotic Method Geometric Optic Standard System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, New York (1964).Google Scholar
  2. 2.
    V. V. Zheleznyakov, Electromagnetic Waves in Cosmic Plasmas [in Russian], Nauka, Moscow (1977).Google Scholar
  3. 3.
    N. S. Erokhin and S. S. Moiseev, in: Problems in Plasma Theory [in Russian], No. 7, Atomizdat, Moscow (1973).Google Scholar
  4. 4.
    K. G. Budden, Proc. R. Soc.,215, 215 (1952).Google Scholar
  5. 5.
    Yu. A. Kravtsov, Dokl. Akad. Nauk SSSR,183, 74 (1968).Google Scholar
  6. 6.
    K. G. Budden, J. Atm. Terr. Phys.,34, 1909 (1972).CrossRefGoogle Scholar
  7. 7.
    M. A. Simpson, Austral. J. Phys.,29, 343 (1976).Google Scholar
  8. 8.
    C. Altman, in: J. A. Holtet (editor), ELF-VLF Radio-Wave Propagation, D. Reidel, Dordrecht and Boston,10, 87 (1974).Google Scholar
  9. 9.
    N. G. Denisov, Uch. Zap. Gork. Gos. Univ.,35, 3 (1957).Google Scholar
  10. 10.
    N. S. Bellyustin, Izv. Vyssh. Uchebn. Zaved., Radiofiz.,21, No. 4, 487 (1978).Google Scholar
  11. 11.
    D. Jones, Ann. Geophys.,28, 527 (1972).Google Scholar
  12. 12.
    E. Fialkov, C. Altman, and H. Cory, J. Atm. Terr. Phys.,35, 317 (1973).CrossRefGoogle Scholar
  13. 13.
    S. C. Miller and R. H. Good, Phys. Rev.,91, 174 (1953).CrossRefGoogle Scholar
  14. 14.
    Yu. A. Kravtsov and O. N. Naida, Zh. Eksp. Teor. Fiz.,71, 237 (1976).Google Scholar
  15. 15.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New York (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • N. S. Bellyustin
    • 1
  1. 1.Scientific-Research Institute of RadiophysicsUSSR

Personalised recommendations