Studia Logica

, Volume 36, Issue 3, pp 213–228 | Cite as

Degrees of maximality of Klukasiewicz-like sentential calculi

  • Grzegorz Malinowski


The paper is concerned with the problem of characterization of strengthenings of the so-called Lukasiewicz-like sentential calculi. The calculi under consideration are determined byn-valued Lukasiewicz matrices (n>2,n finite) with superdesignated logical values. In general. Lukasiewicz-like sentential calculi are not implicative in the sense of [7]. Despite of this fact, in our considerations we use matrices analogous toS-algebras of Rasiowa. The main result of the paper says that the degree of maximality of anyn-valued Lukasiewicz-like sentential calculus is finite and equal to the degree of maximality of the correspondingn-valued Lukasiewicz calculus.


Mathematical Logic Computational Linguistic Sentential Calculus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. S. Grigolia,Algebraic analysis of Lukasiewicz-Tarski's n-ralued logical calculi (in Russian),Proceedings of Tbilisi University. A 6–7, 149–150. Mathematical and Natural Sciences, Tbilisi (1973), pp. 121–132.Google Scholar
  2. [2]
    J. Lukasiewicz, A. Tarski,Untersuchungen über den Aussagenkalkül.Comptes-rendus des séances de la Société des Sciences et de Lettres de Varsorie, Cl. III. 23 (1930), pp. 30–50.Google Scholar
  3. [3]
    G. Malinowski,Matrix representation for the dual counterparts of Lukasiewicz n-ralued sentential calculi and the problem of their degrees of maximality.Proceedings of the V-th International Symposium on Multiple-Valued Logics. Indiana University, Bloomington, May 1975, pp. 252–261.Google Scholar
  4. [4]
    G. Malinowski,S-algebras for n-ralued sentential calculi of Lukasiewicz. The degrees of marimality of some Lukasicwicz's logics, in:Selected papers on Lukasiewicz sentential calculi. Ed. R. Wójcicki, ass. ed. G. Malinowski, Ossolineum, 1977, pp. 149–159.Google Scholar
  5. [5]
    P. Mangani,Su certe algebra conesse con logische a piú ralori,Bolletino della Unione Matematica Italiana, (4) 8 (1973), pp. 68–78.Google Scholar
  6. [6]
    R. McNaughton,A theorem about infinite-valued sentential logic,Journal of Symbolic Logic, 16 (1951), pp. 1–13.Google Scholar
  7. [7]
    H. Rasiowa,An algebraic approach to non classical logics, North Holland Publishing Company, Amsterdam, Polish Scientific Publishers, Warszawa, 1974.Google Scholar
  8. [8]
    A. Rose,The degree of completeness of the m-valued Lukasiewicz propositional calculus,The Journal of the London Mathematical Society. 27 (1952), pp. 92–102.Google Scholar
  9. [9]
    J. B. Rosser, A. R. Turquette,Many-valued logics, North-Holland Publishing Company. Amsterdam, 1952.Google Scholar
  10. [10]
    R. Wójcicki,The logics stronger than three-valued sentential calculus. The notion of degree of macimality rersus the notion of degree of completeness,Studia Logica, XXXIII (1974), No. 2. pp. 201–214.Google Scholar
  11. [11]
    R. Wójcicki,Matrir approach in methodology of sentential calculi.Studia Logica, XXXII (1973), pp. 7–37.Google Scholar
  12. [12]
    R. Wójcicki,On matrix representations of consequence operations of Łukasiewicz sentential calculi,Zeitschrift für mathematische Logil: und Grundlagen der Mathematik. 19 (1973), pp. 239–247.Google Scholar
  13. [13]
    R. Wójcicki,A theorem on the finiteness of the degree of marimality of the n-valued Lukasiewicz logics,Proceedings of the V-th International Symposium on Multiple-Valued Logics, Indiana University. Bloomington, May 1975, pp. 240–251.Google Scholar

Copyright information

© Warzawa 1977

Authors and Affiliations

  • Grzegorz Malinowski
    • 1
    • 2
  1. 1.Institute of PhilosophyLódź UniversityLodzPoland
  2. 2.The Section of Logic Institute of Philosophy and SociologyThe Polish Academy of SciencesPoland

Personalised recommendations