Advertisement

Studia Logica

, Volume 36, Issue 3, pp 213–228 | Cite as

Degrees of maximality of Klukasiewicz-like sentential calculi

  • Grzegorz Malinowski
Article

Abstract

The paper is concerned with the problem of characterization of strengthenings of the so-called Lukasiewicz-like sentential calculi. The calculi under consideration are determined byn-valued Lukasiewicz matrices (n>2,n finite) with superdesignated logical values. In general. Lukasiewicz-like sentential calculi are not implicative in the sense of [7]. Despite of this fact, in our considerations we use matrices analogous toS-algebras of Rasiowa. The main result of the paper says that the degree of maximality of anyn-valued Lukasiewicz-like sentential calculus is finite and equal to the degree of maximality of the correspondingn-valued Lukasiewicz calculus.

Keywords

Mathematical Logic Computational Linguistic Sentential Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. S. Grigolia,Algebraic analysis of Lukasiewicz-Tarski's n-ralued logical calculi (in Russian),Proceedings of Tbilisi University. A 6–7, 149–150. Mathematical and Natural Sciences, Tbilisi (1973), pp. 121–132.Google Scholar
  2. [2]
    J. Lukasiewicz, A. Tarski,Untersuchungen über den Aussagenkalkül.Comptes-rendus des séances de la Société des Sciences et de Lettres de Varsorie, Cl. III. 23 (1930), pp. 30–50.Google Scholar
  3. [3]
    G. Malinowski,Matrix representation for the dual counterparts of Lukasiewicz n-ralued sentential calculi and the problem of their degrees of maximality.Proceedings of the V-th International Symposium on Multiple-Valued Logics. Indiana University, Bloomington, May 1975, pp. 252–261.Google Scholar
  4. [4]
    G. Malinowski,S-algebras for n-ralued sentential calculi of Lukasiewicz. The degrees of marimality of some Lukasicwicz's logics, in:Selected papers on Lukasiewicz sentential calculi. Ed. R. Wójcicki, ass. ed. G. Malinowski, Ossolineum, 1977, pp. 149–159.Google Scholar
  5. [5]
    P. Mangani,Su certe algebra conesse con logische a piú ralori,Bolletino della Unione Matematica Italiana, (4) 8 (1973), pp. 68–78.Google Scholar
  6. [6]
    R. McNaughton,A theorem about infinite-valued sentential logic,Journal of Symbolic Logic, 16 (1951), pp. 1–13.Google Scholar
  7. [7]
    H. Rasiowa,An algebraic approach to non classical logics, North Holland Publishing Company, Amsterdam, Polish Scientific Publishers, Warszawa, 1974.Google Scholar
  8. [8]
    A. Rose,The degree of completeness of the m-valued Lukasiewicz propositional calculus,The Journal of the London Mathematical Society. 27 (1952), pp. 92–102.Google Scholar
  9. [9]
    J. B. Rosser, A. R. Turquette,Many-valued logics, North-Holland Publishing Company. Amsterdam, 1952.Google Scholar
  10. [10]
    R. Wójcicki,The logics stronger than three-valued sentential calculus. The notion of degree of macimality rersus the notion of degree of completeness,Studia Logica, XXXIII (1974), No. 2. pp. 201–214.Google Scholar
  11. [11]
    R. Wójcicki,Matrir approach in methodology of sentential calculi.Studia Logica, XXXII (1973), pp. 7–37.Google Scholar
  12. [12]
    R. Wójcicki,On matrix representations of consequence operations of Łukasiewicz sentential calculi,Zeitschrift für mathematische Logil: und Grundlagen der Mathematik. 19 (1973), pp. 239–247.Google Scholar
  13. [13]
    R. Wójcicki,A theorem on the finiteness of the degree of marimality of the n-valued Lukasiewicz logics,Proceedings of the V-th International Symposium on Multiple-Valued Logics, Indiana University. Bloomington, May 1975, pp. 240–251.Google Scholar

Copyright information

© Warzawa 1977

Authors and Affiliations

  • Grzegorz Malinowski
    • 1
    • 2
  1. 1.Institute of PhilosophyLódź UniversityLodzPoland
  2. 2.The Section of Logic Institute of Philosophy and SociologyThe Polish Academy of SciencesPoland

Personalised recommendations