Skip to main content
Log in

A bichromatic imaging method in solar studies

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

The basic concept of a bichromatic imaging technique has been formulated. Specific applications of this method are analyzed in the context of the examination of solar plasma characteristics by pinpointing its merits and demerits. Specialized requirements for the spectral devices are set forth, which can be summarized as: a) the presence of two nearby identical spectral passbands, b) the mutual orthogonality for the polarization of the light transmitted through the neighboring bands, and c) the possibility of controlling the relative position of the bands. Several alternative plausible implementations of the method are considered, using Fabry-Perot interferometers (FPI) and magnetooptical filters (MOF) to measure the longitudinal magnetic field strength and the intensity field. A new MOF-based design of a filter magnetograph is proposed, in which two optical resonance cells are combined into one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. D. Babcock and H. W. Babcock,Astrophys. Soc. Pacific,64, 282 (1952).

    Article  Google Scholar 

  2. V. M. Grigoryev and N. I. Kobanov, “Solar Magnetographs.” in:Studies in Geomagnetism, Aéronomy and Solar Physics, No. 52, 155 (1980).

    Google Scholar 

  3. H. E. Ramsey,Sol. Phys.,21, 54 (1971).

    Article  Google Scholar 

  4. A. Guoxiang, R. I. Fear, and I. Peiwen,Acta Astrophys. Sin.,10, No. 2, 180 (1990).

    Google Scholar 

  5. N. N. Lebedev, V. M. Grigiryev, N. V. Klochek, and N. I. Kobanov, “A Method of Measuring Magnetic Field Intensity,” USSR Patent No. 335652,Byull. izobretenii, No. 13 (1972).

  6. D. M. Rust,Austr. J. Phys.,38, 781 (1985).

    Google Scholar 

  7. D. M. Rust,SPIE, Instrumentation In Astronomy.Vol. 627 (1986), p. 39.

    Google Scholar 

  8. D. Bonaccini, “Infrared Imaging Filter With Lithium Niobate Double Channel Fabry Perot Interferometer,” NOAO Preprint. No. 179 (1988).

  9. G. Agnelli, A. Cacciani, and M. Fofi,Sol. Phys.,44, 509 (1975).

    Article  Google Scholar 

  10. A. Cacciani and M. Fofi,Sol. Phys.,59, 179 (1978).

    Article  Google Scholar 

  11. A. Cacciani,Space Sci. Rev.,29, 403 (1981).

    Article  Google Scholar 

  12. E. J. Rhodes, Jr., A. Cacciani, S. Tomczyk, R. K. Ulrich, J. Blamont, R. F. Howard, P. Damont, and E. J. Smith,Adv. Space Res.,4, No. 8, 103 (1984).

    Article  Google Scholar 

  13. D. Rust, “Some Design Considerations for a Solar Magnetograph,” Preprint APL/IHU 84-27 (1984).

  14. G. A. Rakuljic and V. Leyva,Opt. lett.,18, No. 6, 459 (1993).

    Google Scholar 

  15. C. U. Keller, F. Aebersold, U. Egger, et al., LEST Technical Report No. 53 (1992).

  16. E. A. Dubov,Soln. Dannye, No. 4, 62 (1966).

    Google Scholar 

  17. N. I. Kobanov,Sol. Phys.,82, 237 (1983).

    Article  Google Scholar 

  18. N. I. Kobanov,Sol. Phys.,145, 11 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 10, pp. 1315–1325, October, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigoryev, V.M., Kobanov, N.I. A bichromatic imaging method in solar studies. Radiophys Quantum Electron 39, 880–886 (1996). https://doi.org/10.1007/BF02120979

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02120979

Keywords

Navigation