Advertisement

Studia Logica

, Volume 31, Issue 1, pp 49–70 | Cite as

On logical systems with implications and theories of algebras

  • Jerzy Kotas
Article

Keywords

Mathematical Logic Computational Linguistic Logical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    G. Birkhoff,Lattice theory, New York 1948.Google Scholar
  2. [2]
    G. Birkhoff, J. v. Neumann,The logic of quantum mechanics. Ann. of Math., 37, 1936, 823–843.MathSciNetGoogle Scholar
  3. [3]
    H. B. Curry,Foundations of mathematical logic. New York, San Francisco, Toronto, London 1963.Google Scholar
  4. [4]
    A. Horn,The separation theorem of intuitionistic propositional calculus. Journal Symb. Logic, 27, 1962, 391–399.Google Scholar
  5. [5]
    S. Jaśkowski,Rachunek zdań dla systemów dedukcyjnych sprzecznych. Studia Soc. Scient. Torunesis, sec. A, 1, 1948, 57–77.Google Scholar
  6. [6]
    S. Jaśkowski,Sur les variables propositionnelles dépendantes. Studia Soc. Scient. Torunensis, sec. A, 1, 1948, 17–21.Google Scholar
  7. [7]
    J. Kotas,An axiom system for the modular logic. Studia Logica, 21, 1967, 17–38.Google Scholar
  8. [8]
    J. Kotas,Logical systems with implications. Studia Logica, 28, 1971, 101–117.Google Scholar
  9. [9]
    J. Kotas,About the equivalent theories of algebras with relations. Studia Logica, 30, 1972, 81–98.Google Scholar
  10. [10]
    J. Kotas, A. Pieczkowski,On a generalized cylindrical algebra and intuitionistic logic. Studia Logica, 18, 1966, 73–81.Google Scholar
  11. [11]
    J. Kotas, A. Pieczkowski,A cylindrical algebra based on the Boolean ring. Studia Logica, 21, 1967, 71–80.Google Scholar
  12. [12]
    J. Kotas, A. Pieczkowski, Allgemeine logische und mathematische Theorien. Zeit. Math. Logik Grundlagen Math. 16, 1970, 353–376.Google Scholar
  13. [13]
    C. I. Lewis, C. H. Langford,Symbolic logic. New York 1932.Google Scholar
  14. [14]
    J. Łukasiewicz,Die Logik und das Grundlagenproblem. Les Entretiens de Zurich sur les fondements et la méthode des sciences mathématiques, 1941, 82–100.Google Scholar
  15. [15]
    A. A. Monteiro,Axiomes independants pour les algébres de Brouwer. Rev. Un. Mat. Argentina, 17, 1955, 149–160.Google Scholar
  16. [16]
    J. E. Rubin,Remarks about a closure algebra in which closed elements are open. Proc. Amer. Math. Soc., 7, 1956, 30–34.Google Scholar
  17. [17]
    H. Rasiowa, R. Sikorski.The mathematics of metamathematics. Warszawa 1963.Google Scholar
  18. [18]
    B. Sobociński,Aksjomatyzacja implikacyjno-koniunkcyjnej teorii dedukcji. Przegląd Filozoficzny, 38, 1935, 85–95.Google Scholar
  19. [19]
    K. Schütte,Über einen Teilbereich des Aussagenkalküls. Odbitka ze Sprawozdań z posiedzeń Towarzystwa Naukowego Warszawskiego, 26, 1933, 30–32.Google Scholar
  20. [20]
    A. Tarski, L. Henkin,Cylindric algebras. Proc. of Symposia in Pure Math., 1961, Lattice theory, 83–113.Google Scholar
  21. [21]
    M. Wajsberg,Metalogische Beiträge II. Wiadomości Matematyczne, 47, 1939, 119–139.Google Scholar
  22. [22]
    M. Wajsberg,Untersuchungen über den Aussagenkalkül von A. Heyting. Wiadomości Matematyczne, 46, 1938, 45–101.Google Scholar

Copyright information

© Warzawa 1973

Authors and Affiliations

  • Jerzy Kotas
    • 1
  1. 1.Instytut MatematykiUniwersytet Im. M. KopernikaToruń

Personalised recommendations