Studia Logica

, Volume 31, Issue 1, pp 49–70 | Cite as

On logical systems with implications and theories of algebras

  • Jerzy Kotas
Article

Keywords

Mathematical Logic Computational Linguistic Logical System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    G. Birkhoff,Lattice theory, New York 1948.Google Scholar
  2. [2]
    G. Birkhoff, J. v. Neumann,The logic of quantum mechanics. Ann. of Math., 37, 1936, 823–843.MathSciNetGoogle Scholar
  3. [3]
    H. B. Curry,Foundations of mathematical logic. New York, San Francisco, Toronto, London 1963.Google Scholar
  4. [4]
    A. Horn,The separation theorem of intuitionistic propositional calculus. Journal Symb. Logic, 27, 1962, 391–399.Google Scholar
  5. [5]
    S. Jaśkowski,Rachunek zdań dla systemów dedukcyjnych sprzecznych. Studia Soc. Scient. Torunesis, sec. A, 1, 1948, 57–77.Google Scholar
  6. [6]
    S. Jaśkowski,Sur les variables propositionnelles dépendantes. Studia Soc. Scient. Torunensis, sec. A, 1, 1948, 17–21.Google Scholar
  7. [7]
    J. Kotas,An axiom system for the modular logic. Studia Logica, 21, 1967, 17–38.Google Scholar
  8. [8]
    J. Kotas,Logical systems with implications. Studia Logica, 28, 1971, 101–117.Google Scholar
  9. [9]
    J. Kotas,About the equivalent theories of algebras with relations. Studia Logica, 30, 1972, 81–98.Google Scholar
  10. [10]
    J. Kotas, A. Pieczkowski,On a generalized cylindrical algebra and intuitionistic logic. Studia Logica, 18, 1966, 73–81.Google Scholar
  11. [11]
    J. Kotas, A. Pieczkowski,A cylindrical algebra based on the Boolean ring. Studia Logica, 21, 1967, 71–80.Google Scholar
  12. [12]
    J. Kotas, A. Pieczkowski, Allgemeine logische und mathematische Theorien. Zeit. Math. Logik Grundlagen Math. 16, 1970, 353–376.Google Scholar
  13. [13]
    C. I. Lewis, C. H. Langford,Symbolic logic. New York 1932.Google Scholar
  14. [14]
    J. Łukasiewicz,Die Logik und das Grundlagenproblem. Les Entretiens de Zurich sur les fondements et la méthode des sciences mathématiques, 1941, 82–100.Google Scholar
  15. [15]
    A. A. Monteiro,Axiomes independants pour les algébres de Brouwer. Rev. Un. Mat. Argentina, 17, 1955, 149–160.Google Scholar
  16. [16]
    J. E. Rubin,Remarks about a closure algebra in which closed elements are open. Proc. Amer. Math. Soc., 7, 1956, 30–34.Google Scholar
  17. [17]
    H. Rasiowa, R. Sikorski.The mathematics of metamathematics. Warszawa 1963.Google Scholar
  18. [18]
    B. Sobociński,Aksjomatyzacja implikacyjno-koniunkcyjnej teorii dedukcji. Przegląd Filozoficzny, 38, 1935, 85–95.Google Scholar
  19. [19]
    K. Schütte,Über einen Teilbereich des Aussagenkalküls. Odbitka ze Sprawozdań z posiedzeń Towarzystwa Naukowego Warszawskiego, 26, 1933, 30–32.Google Scholar
  20. [20]
    A. Tarski, L. Henkin,Cylindric algebras. Proc. of Symposia in Pure Math., 1961, Lattice theory, 83–113.Google Scholar
  21. [21]
    M. Wajsberg,Metalogische Beiträge II. Wiadomości Matematyczne, 47, 1939, 119–139.Google Scholar
  22. [22]
    M. Wajsberg,Untersuchungen über den Aussagenkalkül von A. Heyting. Wiadomości Matematyczne, 46, 1938, 45–101.Google Scholar

Copyright information

© Warzawa 1973

Authors and Affiliations

  • Jerzy Kotas
    • 1
  1. 1.Instytut MatematykiUniwersytet Im. M. KopernikaToruń

Personalised recommendations