Zeitschrift für Physik A Atoms and Nuclei

, Volume 313, Issue 1–2, pp 133–135 | Cite as

Multipole pair fields at finite temperature

  • K. Mühlhans
  • Eva M. Müller
  • U. Mosel
  • A. L. Goodman


Finite temperature HFB calculations have been performed in a model using the Surface Delta Interaction as the generating two body force. TheT=0 as well as theT=1 multipole pair fields are studied at various temperatures and different angular momenta. Higher multipole modes appear not only to be more resistant against increasing angular frequency but also against increasing temperature in comparison with the standard monopole pairing mode.


Angular Momentum Elementary Particle Angular Frequency Body Force Finite Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goodman, A.L.: Nucl. Phys.A 352, 30 (1981)Google Scholar
  2. 2.
    Goodman, A.L.: Nucl. Phys.A 352, 45 (1981)Google Scholar
  3. 3.
    Tanabe, K., Sugawara-Tanabe, K.: Nucl. Phys.A 390, 385 (1982)Google Scholar
  4. 4.
    Muehlhans, K., Diebel, M., Neergård, K., Mosel, U.: Phys. Lett.120 B, 44 (1983)Google Scholar
  5. 5.
    Mueller, E.M., Muehlhans, K., Neergård, K., Mosel, U.: Nucl. Phys.A 383, 233 (1982)Google Scholar
  6. 6.
    Green, I.M., Moszkowski, S.A.: Phys. Rev.139 B, 790 (1965)Google Scholar
  7. 7.
    Glaudemans, P.W.M., Wildenthal, B.H., McGrory, J.B.: Phys. Lett.21, 427 (1966)Google Scholar
  8. 8.
    Plastino, A., Arvieu, R., Moszkowski, S.A.: Phys. Rev.145, 837 (1966)Google Scholar
  9. 9.
    Nilsson, S.G.: K. Dan. Vidensk Selsk. Mat. Fys. Medd.29, no 16 (1955)Google Scholar
  10. 10.
    Wakai, M., Faessler, A.: Nucl. Phys.A 295, 86 (1978)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • K. Mühlhans
    • 1
  • Eva M. Müller
    • 1
  • U. Mosel
    • 1
  • A. L. Goodman
    • 2
  1. 1.Institut für Theoretische PhysikUniversität GiessenFederal Republic of Germany
  2. 2.Physics DepartmentTulane UniversityNew OrleansUSA

Personalised recommendations