Angular distributions in pre-equilibrium reactions

  • A. Chatterjee
  • S. K. Gupta


A new model is proposed for calculating angular distributions in preequilibrium reactions. In this model, as in the model of Feshbach et al. the system consisting of target plus projectile initially branches into two sets of states with either no particle in the continuum (multistep compound states) or with at least one particle in the continuum (multistep direct states). The multistep compound emission is assumed to be isotropic while the angular distribution of the multistep direct emission is described using the fast particle model of Mantzouranis et al. A similar master equation is used for both chains of states differing only in the angular dependence of the emission rates. The two chains of states are treated independantly neglecting inter-branch transitions. The angular distributions for 14.6 MeV neutrons calculated using this model are found to be in better agreement with the data than the fast particle model.


Elementary Particle Angular Distribution Emission Rate Master Equation Angular Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blann, M.: Annu. Rev. Nucl. Sci.25, 123 (1975)Google Scholar
  2. 2.
    Mantzouranis, G., Agassi, D., Weidenmüller, H.A.: Phys. Lett.57B, 220 (1975)Google Scholar
  3. 2a.
    Mantzouranis, G., Weidenmüller, H.A., Agassi, D.: Z. Physik A — Atoms and Nuclei276, 145 (1976)Google Scholar
  4. 3.
    Akkermans, J.M.: Phys. Lett.82B, 20 (1979)Google Scholar
  5. 3a.
    Akkermans, J.M., Gruppelaar, H.: ECN-60, Netherlands Energy Research Foundation Report Series (1979)Google Scholar
  6. 4.
    Akkermans, J.M., Gruppelaar, H., Reffo, G.: Phys. Rev. C22, 73 (1980)Google Scholar
  7. 4a.
    Gruppelaar, H., Akkermans, J.M.: ECN-84, Netherlands Energy Research Foundation Report Series (1980)Google Scholar
  8. 5.
    Mädler, P., Reif, R.: Nucl. Phys. A273, 27 (1982), and A337, 445 (1980)Google Scholar
  9. 5a.
    Bonetti, R., Camnasio, M., Colli Milazzo, L., Hodgson, P.E.: Phys. Rev. C24, 71 (1981)Google Scholar
  10. 6.
    Feshbach, H., Kerman, A., Koonin, S.: Ann. Phys. (N.Y.)125, 429 (1979)Google Scholar
  11. 7.
    Chatterjee, A., Gupta, S.K.: Z. Phys. A — Atoms and Nuclei301, 275 (1981)Google Scholar
  12. 7a.
    Gupta, S.K., Chatterjee, A.: Int. Conf. on Nuclear Cross Sections for Technology, Knoxville (October 1979), Contributed PaperGoogle Scholar
  13. 8.
    Akkermans, J.M.: Z. Phys. A — Atoms and Nuclei292, 57 (1979)Google Scholar
  14. 9.
    Hermsdorf, D., Meister, A., Sassonoff, S., Seeliger, D., Seidel, K., Shahin, F.: Zfk 277 (1974) Zentralinstitut für Kernforschung Rossendorf bei Dresden reportGoogle Scholar
  15. 10.
    Kalbach, C.: Phys. Rev. C23, 124 (1981)Google Scholar
  16. 11.
    Kalbach, C.: Z. Phys. A — Atoms and Nuclei283, 401 (1977)Google Scholar
  17. 12.
    Ericson, T.: Adv. Phys.9, 425 (1960)Google Scholar
  18. 13.
    Kalbach, C.: Phys. Rev. C24, 819 (1981)Google Scholar
  19. 14.
    Gilbert, A., Cameron, A.G.W.: Can. J. Phys.43, 1446 (1965)Google Scholar
  20. 15.
    Chatterjee, A., Murthy, K.H.N., Gupta, S.K.: Pramana16, 391 (1981)Google Scholar
  21. 16.
    Kalbach, C.: Z. Phys. A — Atoms and Nuclei287, 319 (1978)Google Scholar
  22. 17.
    Wapstra, A.H., Gove, N.B.: Nucl. Data Tables9, 303 (1971)Google Scholar
  23. 18.
    Ziyang, S., Shunuan, W., Jingshang, Z., Yizhong, Z.: Z. Phys. A — Atoms and Nuclei305, 61 (1982)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. Chatterjee
    • 1
  • S. K. Gupta
    • 1
    • 2
  1. 1.Nuclear Physics DivisionBhabha Atomic Research Centre BombayIndia
  2. 2.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations