Annals of Operations Research

, Volume 33, Issue 3, pp 227–236 | Cite as

Some properties of graph centroids

  • W. Piotrowski
  • M. M. Sysło
Section III Graph-Theoretical Aspects Of TND


The concept of a branch weight centroid has been extended in [12] so that it can be defined for an arbitrary finite setX with a distinguished familyC of "convex" subsets ofX. In particular, the centroid of a graphG was defined forX to be the vertex setV(G) ofG andUV(G) is convex if it is the vertex set of a chordless path inG. In this paper, which is an extended version of [13], we give necessary and sufficient conditions for a graph to be a centroid of another graph as well as of itself. Then, we apply these results to some particular classes of graphs: chordal, Halin, series-parallel and outerplanar.


Extended Version Weight Centroid Chordless Path Branch Weight Finite setX 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.A. Dirac, On rigid circuit graphs, Abh. Math. Seminar Univ. Hamburg 25(1961)71–76.Google Scholar
  2. [2]
    M. Faber and R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Alg. Discr. Math. 7(1986)433–444.Google Scholar
  3. [3]
    F. Gavril, Algorithms on clique separable graphs, Discr. Math. 19(1977)159–165.Google Scholar
  4. [4]
    M.C. Golumbic,Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).Google Scholar
  5. [5]
    R.E. Jamison-Waldner, A perspective on abstract convexity: Classifying alignments by varieties, in:Convexity and Related Combinatorial Geometry, ed. D.C. Kay and B. Drech (Dekker, New York, 1982)113–150.Google Scholar
  6. [6]
    R.E. Jamison-Waldner, Copoints in antimatroids, Congr. Numer. 29(1980)535–544.Google Scholar
  7. [7]
    R.E. Jamison-Waldner and P.H. Edelman, The theory of convex geometries, Geom. Dedicata 19(1985)247–270.Google Scholar
  8. [8]
    R.E. Jamison-Waldner and R. Nowakowski, A Helly theorem for convexity in graphs, Discr. Math. 51(1984)35–39.Google Scholar
  9. [9]
    C. Jordan, Sur les assemblages de lignes, J. reine und angew. Math. 70(1869)185–190.Google Scholar
  10. [10]
    G. Kothe,Topologische Lineare Räume I (Springer, Berlin, 1960).Google Scholar
  11. [11]
    O. Ore,Theory of Graphs (AMS, Providence, RI, 1962).Google Scholar
  12. [12]
    W. Piotrowski, A generalization of branch weight centroids, Zastosow. Matem. 19(1987)541–545.Google Scholar
  13. [13]
    W. Piotrowski and M.M. Sysło, A characterization of centroidal graphs, in:Combinatorial Optimization, Lecture Notes in Mathematics, Vol. 1403, ed. B. Simeone (Springer, Berlin, 1989), pp. 272–281.Google Scholar
  14. [14]
    P.J. Slater, Maximin facility location, J. Res. Nat. Bur. Standards B79(1975)107–115.Google Scholar
  15. [15]
    P.J. Slater, Accretion centers: A generalization of branch weight centroids, Discr. Appl. Math. 3(1984)187–192.Google Scholar
  16. [16]
    R.E. Tarjan, Decomposition by clique separators, Discr. Math. 55(1985)221–232.Google Scholar
  17. [17]
    B. Zelinka, A remark on self-centroidal graphs, to appear.Google Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1991

Authors and Affiliations

  • W. Piotrowski
    • 1
  • M. M. Sysło
    • 1
  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations