Skip to main content
Log in

Eight-dimensional spinor representation of the Poincaré group

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Finite-dimensional matrix representations of the Poincaré group are discussed with particular emphasis on the eight-dimensional spinor representation. It is speculated that the complex eight-dimensional representation space might be interpreted as a more fundamental entity than Minkowski space, being in a sense a square root of the latter. One can model the usual position, momentum, and angular momentum variables of a particle of nonzero rest mass and arbitrary spin by real bilinear forms in the 8-spinor components, and obtain their correct equations of motion by subjecting the spinor to a Schrödinger-like evolution equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bargmann, V., and Wigner, E. P. (1948).Proceedings of the National Academy of Sciences of the United States of America,34, 211.

    Google Scholar 

  • Barut, A. O., and Haugen, R. B. (1973).Nuovo Cimento,18A, 495, 511.

    Google Scholar 

  • Bayen, F. (1976). InDifferential Geometry and Relativity, M. Cohen and M. Flato, eds., p. 171, Reidel, Dordrecht.

    Google Scholar 

  • Boerner, H. (1963).Representations of Groups, Chaps. III, IX. North-Holland, Amsterdam.

    Google Scholar 

  • Bracken, A. J., and Jessup, B. (1982).Journal of Mathematical Physics,23, 1925, 1947.

    Google Scholar 

  • Brauer, R., and Weyl, H. (1935).American Journal of Mathematics,57, 425.

    Google Scholar 

  • Campolattaro, A. A. (1980).International Journal of Theoretical Physics,19, 99, 127.

    Google Scholar 

  • Cartan, E. (1914).Annales Scientifiques de l'Ecole Normale Superieure,31, 263.

    Google Scholar 

  • Cartan, E. (1966).The Theory of Spinors. Hermann, Paris.

    Google Scholar 

  • Derrick, G. H. (1982).Physics Letters,92A, 374.

    Google Scholar 

  • Dirac, P. A. M. (1936).Annals of Mathematics,37, 429.

    Google Scholar 

  • Evans, N. T. (1967).Journal of Mathematical Physics,8, 170.

    Google Scholar 

  • Fierz, M. (1937).Zeitschrift für Physik,104, 553.

    Google Scholar 

  • Fillmore, J. P. (1977).International Journal of Theoretical Physics,16, 937.

    Google Scholar 

  • Foldy, L. L. (1956).Physical Review,102, 568.

    Google Scholar 

  • Fronsdal, C. (1959).Physical Review,113, 1367.

    Google Scholar 

  • Hepner, W. A. (1962).Nuovo Cimento,26, 351.

    Google Scholar 

  • Inönü, E., and Wigner, E. P. (1953).Proceedings of the National Academy of Sciences of the United States of America,39, 510.

    Google Scholar 

  • Itzykson, C., and Zuber, J-B. (1980).Quantum Field Theory, pp. 87–89. McGraw-Hill, New York.

    Google Scholar 

  • Kastrup, H. A. (1962).Annalen der Physik,9, 388.

    Google Scholar 

  • Lamont, J. S., and Moses, H. E. (1962).Journal of Mathematical Physics,3, 405.

    Article  Google Scholar 

  • Lamont, J. S., and Moses, H. E. (1964).Journal of Mathematical Physics,5, 294, 1438.

    Article  Google Scholar 

  • Luehr, C. P., and Rosenbaum, M. (1982).Journal of Mathematical Physics,23, 1471.

    Article  Google Scholar 

  • Lukács, B., Perjés, Z., Sebestyén, á., Newman, E. T., and Porter, J. (1982).Journal of Mathematical Physics,23, 2108.

    Article  Google Scholar 

  • Mack, G., and Salam, A. (1969).Annals of Physics,53, 174.

    Article  Google Scholar 

  • Murai, Y. (1953).Progress of Theoretical Physics,9, 147.

    Google Scholar 

  • Murai, Y. (1954).Progress of Theoretical Physics,11, 441.

    Google Scholar 

  • Murai, Y. (1958).Nuclear Physics,6, 489.

    Article  Google Scholar 

  • Nash, P. L. (1980).Journal of Mathematical Physics,21, 1024, 2534.

    Article  Google Scholar 

  • Nash, P. L. (1981a).Journal of Mathematical Physics,22, 631(E).

    Google Scholar 

  • Nash, P. L. (1981b).Journal of Mathematical Physics,22, 983.

    Article  Google Scholar 

  • Pauli, W. (1936).Annales Institut Henri Poincaré,6, 109.

    Google Scholar 

  • Penrose, R. (1967).Journal of Mathematical Physics,8, 345.

    Article  Google Scholar 

  • Penrose, R. (1968).International Journal of Theoretical Physics,1, 61.

    Article  Google Scholar 

  • Penrose, R. (1969).Journal of Mathematical Physics,10, 38.

    Article  Google Scholar 

  • Penrose, R., and MacCallum, M. A. H. (1973).Physics Reports,C6, 243.

    Google Scholar 

  • Penrose, R. (1975). InQuantum Gravity, C. J. Isham, R. Penrose, D. W. Sciama, eds., p. 268. Clarendon Press, Oxford.

    Google Scholar 

  • Qadir, A. (1978).Physics Reports,C39, 133.

    Google Scholar 

  • Qadir, A. (1980).Journal of Mathematical Physics,21, 514.

    Article  Google Scholar 

  • Rzewuski, J. (1958).Nuovo Cimento,9, 942.

    Google Scholar 

  • Rzewuski, J. (1982).Journal of Mathematical Physics,23, 1573.

    Article  Google Scholar 

  • Salingaros, N. (1981).Journal of Mathematical Physics,22, 226.

    Article  Google Scholar 

  • Salingaros, N. (1982).Journal of Mathematical Physics,23, 1.

    Article  Google Scholar 

  • Schweber, S. S. (1962).An Introduction to Relativistic Quantum Field Theory, p. 45. Harper and Row, New York.

    Google Scholar 

  • Shirokov, Y. M. (1958).Soviet Physics-JETP (New York),6 (33), 664, 919.

    Google Scholar 

  • Wigner, E. P. (1939).Annals of Mathematics,40, 149.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrick, G.H. Eight-dimensional spinor representation of the Poincaré group. Int J Theor Phys 23, 359–393 (1984). https://doi.org/10.1007/BF02114515

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02114515

Keywords

Navigation