Skip to main content
Log in

Molecular switch of F0F1-ATP synthase, G-protein, and other ATP-driven enzymes

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Exchange-out of amide tritium from labeled γ-subunit of α3β3γ complex of F0F1-ATP synthase was not accelerated by ATP, suggesting that hemagglutinin-type transition of coiled-coil structure did not occur in γ-subunit. Local topology of nucleotide binding site and “switch II” region of G-protein α resemble those of F1-β subunit and other proteins which catalyze ATP-triggered reactions. Probably, binding of nucleotide to F0F1-ATP synthase induces conformational change of the switch II-like region with transforming β subunit structure from “open” to “closed” form and this transformation results in loss of hydrogen bonds with the γ subunit, thus enabling the γ subunit to move.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994).Nature 370, 621–628.

    PubMed  Google Scholar 

  • Amano, T., Tozawa, K., Yohsida, M., and Murakami, H. (1994a).FEBS Lett. 348, 93–98.

    PubMed  Google Scholar 

  • Amano, T., Yoshida, M., Matsuo, Y., and Nishikawa, K. (1994b)FEBS Lett. 351, 1–5.

    PubMed  Google Scholar 

  • Boyer, P. D. (1993).Biochim. Biophys. Acta 1140, 215–250.

    PubMed  Google Scholar 

  • Bullough, P. A., Hughson, F. M., Skehel, J. J., and Wiley, D. C. (1994).Nature 371, 37–43.

    PubMed  Google Scholar 

  • Duncan, T. M., Bulygin, V. V., Zhou, Y., Hutcheon, M. L., and Cross, R. L. (1995).Proc. Natl. Acad. Sci. USA 92, 10964–10968.

    PubMed  Google Scholar 

  • Economou, A., Pogliano, J. A., Beckwith, J., Oliver, D. B., and Wickner, W. (1996).Cell 883, 1171–1182.

    Google Scholar 

  • Ferguson, S. J., Lloyd, W. J., Lyons, M. H., and Radda, G. K. (1975).Eur. J. Biochem. 54, 117–126.

    PubMed  Google Scholar 

  • Foster, D. L., and Fillingame, R. H. (1982).J. Biol. Chem. 257, 2009–2015.

    PubMed  Google Scholar 

  • Georgiadis, M. M., Komiya, H., Chakrabarti, P., Woo, D., Kornuc, J. J., and Rees, D. C. (1992).Science 257, 1653–1659.

    PubMed  Google Scholar 

  • Hermolin, J., and Fillingame, R. H. (1989).J. Biol. Chem. 264, 3896–3903.

    PubMed  Google Scholar 

  • Kaibara, C., Matsui, T., Hisabori, T., and Yoshida, M. (1996).J. Biol. Chem. 271, 2433–2438.

    PubMed  Google Scholar 

  • Kimura, E., Akita, M., Matsuyama, S., and Mizushima, S. (1991).J. Biol. Chem. 266, 6600–6606.

    PubMed  Google Scholar 

  • Kurumizawa, H., and Shibata, T. (1996).J. Biochem. (Tokyo) 119, 216–223.

    Google Scholar 

  • Lambright, D. G., Noel, J. P., Hamm, H. E., and Sigler, P. B. (1994).Nature 369, 621–628.

    PubMed  Google Scholar 

  • Lambright, D. G., Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E., and Sigler, P. B. (1996).Nature 379, 311–319.

    PubMed  Google Scholar 

  • Mitchell, P. (1966).Biol. Rev. 41, 455–502.

    Google Scholar 

  • Mittal, R., Erickson, J. W., and Cerione, R. A. (1996).Science 271, 1413–1416.

    PubMed  Google Scholar 

  • Mixon, M. B., Lee, E., Coleman, D. E., Berghuis, A. M., Gilman, A. G., and Sprang, S. R. (1995).Science 270, 954–960.

    PubMed  Google Scholar 

  • Normand, P., and Bousquet, J. (1989).J. Mol. Evol. 29, 436.

    PubMed  Google Scholar 

  • Ohta, S., Tsuboi, M., Yoshida, M., and Kagawa, Y. (1980).Biochemistry 19, 2160–2165.

    PubMed  Google Scholar 

  • Ohtsubo, M., Yoshida, M., Ohta, S., Kagawa, Y., Yohda, M., and Date, T. (1987).Biochem. Biophys. Res. Commun. 146, 705–710.

    PubMed  Google Scholar 

  • Pedersen, P. L., and Amzel, L. M. (1993).J. Biol. Chem. 268, 9937–9940.

    PubMed  Google Scholar 

  • Ryrie, I. J., and Jagendorf, D. T. (1972).J. Biol. Chem. 247, 4453–4459.

    PubMed  Google Scholar 

  • Senior, A. E. (1990).Annu. Rev. Biophys. Chem. 19, 7–41.

    Google Scholar 

  • Story, R. M., and Steiz, T. A. (1992).Nature 355, 374–376.

    PubMed  Google Scholar 

  • Story, R. M., Webber, I. T., and Steitzs, T. A. (1992).Nature 355, 318–325.

    PubMed  Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982).EMBO J. 1, 945–951.

    PubMed  Google Scholar 

  • Wall, M. A., Coleman, D. E., Lee, I.-L., J. A., Posner, B. A., Gilman, A. G., and Sprang, S. R. (1995).Cell 83, 1047–1058.

    PubMed  Google Scholar 

  • Watts, S. D., Zahng, Y., Fillingame, R. H., and Capaldi, R. A. (1995).FEBS Lett. 368, 235–238.

    PubMed  Google Scholar 

  • Wiley, D. C., and Skehel, J. J. (1987).Annu. Rev. Biochem. 56, 365–394.

    PubMed  Google Scholar 

  • Yoshida, M., and Allison, W. S. (1983).J. Biol. Chem. 258, 14407–14412.

    PubMed  Google Scholar 

  • Yoshida, M., and Amano, T. (1994).FEBS Lett. 359, 1–5.

    Google Scholar 

  • Yoshida, M., Sone, N., Hirata, H., Kagawa, Y., and Ui, N. (1979).J. Biol. Chem. 254, 9525–9533.

    PubMed  Google Scholar 

  • Yoshida, M., Poser, J. W., Allison, W. S., and Esch, F. S. (1981).J. Biol. Chem 256, 148–153.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noji, H., Amano, T. & Yoshida, M. Molecular switch of F0F1-ATP synthase, G-protein, and other ATP-driven enzymes. J Bioenerg Biomembr 28, 451–457 (1996). https://doi.org/10.1007/BF02113988

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02113988

Key words

Navigation