Skip to main content
Log in

Subunit movement during catalysis by F1-F0-ATP synthases

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The catalytic portion (F1) of ATP synthases have the subunit composition α3, β3, γ, δ, ε. This composition imparts structural asymmetry to the entire complex that results in differences in nucleotide binding affinity among the six binding sites. Evidence that two or more sites participate in catalysis, alternating their properties, led to the notion that the interactions of individual αβ pairs with the small subunits must change as binding site properties alternate. A rotation of the γ subunit within the α3β3 hexamer has been proposed as a means of alternating the properties of catalytic sites. Evidence argues that the rotation of the complete γ subunit during ATP hydrolysis is not mandatory for activity. The γ subunit of chloroplast F1 may be cleaved into three large fragments that remain bound to F1. This cleavage enhances ATPase activity without loss of evidence of site-site interactions. Complexes of α3β3 have been shown to have significant ATPase activity in the absence of γ. Mg2+ATP affects the interaction of γ with the different β subunits, and induces other changes in F1, but whether these changes are induced by catalysis, or are fast enough to be involved in the catalytic turnover of the enzyme has not been established. Likewise, changes in structure and in binding site properties induced in thylakoid membrane bound CF1 by formation of an electrochemical proton gradient may activate the enzyme rather than be apart of catalysis. Mechanisms other than rotary catalysis should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F1 :

catalytic portion of the ATP Synthase

F0 :

membrane-associated, proton-translocating portion of the ATP Synthase

References

  • Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994).Nature 370, 621–628.

    PubMed  Google Scholar 

  • Aggeler, R., Haughton, M. A., and Capaldi, R. A. (1995).J. Biol. Chem. 270, 9185–9191.

    PubMed  Google Scholar 

  • Bianchet, M., Ysem, X., Hullihen, J., Petersen, P. L., and Amzel, L. M. (1991).J. Biol. Chem. 266, 21197–21201.

    PubMed  Google Scholar 

  • Boyer, P. D. (1989).FASEB J. 3, 2164–2178.

    PubMed  Google Scholar 

  • Bruist, M. F., and Hammes, G. G. (1981).Biochemistry 20, 6298–6305.

    PubMed  Google Scholar 

  • Cross, R. L. (1992). InMolecular Mechanisms in Bioenergetics (Ernster, L., ed.), Elsevier, Amsterdam, pp. 317–330.

    Google Scholar 

  • Cross, R. L., Grubmeyer, C., and Penefsky, H. S. (1982).J. Biol. Chem. 257, 12101–12105.

    PubMed  Google Scholar 

  • Duncan, T. M., Bulygin, V. V., Zhou, Y., Hutcheon, M. L., and Cross, R. L. (1995).Proc. Natl. Acad. Sci. USA 92, 10964–10968.

    PubMed  Google Scholar 

  • GrÄber, P., Schlodder, E., and Witt, H. T. (1977).Biochim. Biophys. Acta 257, 12030–12038.

    Google Scholar 

  • Haughton, M. A., and Capaldi, R. A. (1995).J. Biol. Chem. 270, 20568–20574.

    PubMed  Google Scholar 

  • Hightower, K. E. (1996). Ph.D. thesis, Johns Hopkins University.

  • Hightower, K. E., and McCarty, R. E. (1996a).Biochemistry,35, 4846–4851.

    PubMed  Google Scholar 

  • Hightower, K. E., and McCarty, R. E. (1996b).Biochemistry,35, 4852–4857.

    PubMed  Google Scholar 

  • Leckband, D., and Hammes, G. G. (1987).Biochemistry 26, 2306–2312.

    PubMed  Google Scholar 

  • McCarty, R. E., Shapiro, A. B., and Feng, Y. (1988). InLight-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models (Stevens, S. E., and Bryant, D. A., eds.), The American Society of Plant Physiologists, Rockville, Maryland, pp. 290–304.

    Google Scholar 

  • Miwa, K., and Yosida, M. (1989).Proc. Natl. Acad. USA 86, 6484–6487.

    Google Scholar 

  • Nalin, C. M., Snyder, B., and McCarty, R. E. (1985).Biochemistry 24, 2318–2324.

    PubMed  Google Scholar 

  • Shapiro, A. B., and McCarty, R. E. (1990).J. Biol. Chem. 265, 4340–4347.

    PubMed  Google Scholar 

  • Sokolov, M., and Gromet-Elhanan, Z. (1996).Biochemistry 35, 1242–1248.

    PubMed  Google Scholar 

  • Strotmann, H., and Bickel-Sandkotter, S. (1984).Ann. Rev. Plant Physiol. 35, 97–120.

    Google Scholar 

  • Turina, P., and Capaldi, R. A. (1994).J. Biol. Chem. 269, 13465–13471.

    PubMed  Google Scholar 

  • Turina, P., Aggeler, R., Lee, R. S. F., Senior, A. E., and Capaldi, R. A. (1993).J. Biol. Chem. 268, 6978–6984.

    PubMed  Google Scholar 

  • Yokoyama, K., Hisabori, T., and Yoshida, M. (1989).J. Biol. Chem. 264, 21837–21841.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Digel, J.G., Hightower, K.E. & McCarty, R.E. Subunit movement during catalysis by F1-F0-ATP synthases. J Bioenerg Biomembr 28, 439–442 (1996). https://doi.org/10.1007/BF02113986

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02113986

Key words

Navigation