Journal of Bioenergetics and Biomembranes

, Volume 28, Issue 5, pp 415–420 | Cite as

The coupling of the relative movement of thea andc subunits of the F0 to the conformational changes in the F1-ATPase

  • Susan M. Howitt
  • Andrew J. W. Rodgers
  • Lyndall P. Hatch
  • Frank Gibson
  • Graeme B. Cox
Article

Abstract

F0F1-ATPase structural information gained from X-ray crystallography and electron microscopy has activated interest in a rotational mechanism for the F0F1-ATPase. Because of the subunit stoichiometry and the involvement of both thea- andc-subunits in the mechanism of proton movement, it is argued that relative movement must occur between the subunits. Various options for the arrangement and structure of the subunits involved are discussed and a mechanism proposed.

Key words

F0F1-ATPase rotation a-, b-, and,c-subunits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994).Nature. 370, 621–628.PubMedGoogle Scholar
  2. Andreo, C. S., Patrie, W. J., and McCarty, R. E. (1982).J. Biol. Chem. 257, 9968–9975.PubMedGoogle Scholar
  3. Aris, J. P., and Simoni, R. D. (1983).J. Biol. Chem. 258, 14599–14609.PubMedGoogle Scholar
  4. Bianchet, M., Ysern, X., Hullihen, J., Pedersen, P. L., and Amzel, L. M. (1991).J. Biol Chem. 266, 21197–21201.PubMedGoogle Scholar
  5. Bianchet, M., Medjahed, D., Hulihen, J., Pedersen, P. L., and Amzel, L. M. (1994).Biochim. Biophys. Acta 1187, 163–164.PubMedGoogle Scholar
  6. BjØrbÆk, C., F∄rsom, V., and Michelsen, O. (1990).FEBS Lett. 260, 31–34.PubMedGoogle Scholar
  7. Boyer, P. D., and Kohlbrenner, W. E. (1981). InEnergy Coupling in Photosynthesis, Elsevier/North-Holland, Amsterdam, pp. 231–240.Google Scholar
  8. Capaldi, R. A. (1994).Nature, Struct. Biol. 1, 660–663.Google Scholar
  9. Cox, G. B., Jans, D. A., Fimmel, A. L., Gibson, F., and Hatch, L. (1984).Biochim. Biophys. Acta 768, 201–208.PubMedGoogle Scholar
  10. Cox, G. B., Fimmel, A. L., Gibson, F., and Hatch, L. (1986).Biochim. Biophys. Acta 849, 62–69.PubMedGoogle Scholar
  11. Cox, G. B., Devenish, R. J., Gibson, F., Howitt, S. M., and Nagley, P. (1992). InMolecular Mechanisms in Bioenergetics, Elsevier, Amsterdam, pp. 283–315.Google Scholar
  12. Cross, R. L. (1981).Annu. Rev. Biochem. 50, 681–714.PubMedGoogle Scholar
  13. Cross, R. L., Cunningham, D., and Tamura, J. K. (1984).Curr. Top. Cell. Regul. 24, 365–378.PubMedGoogle Scholar
  14. Deckers-Hebestreit, G., Steffens, K., and Altendorf, K. (1986).J. Biol Chem. 261, 14878–14881.PubMedGoogle Scholar
  15. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1985).Nature. 1985, 618–624.Google Scholar
  16. Duncan, T. M., Bulygin, V. V., Zhou, Y., Hutcheon, M. L., and Cross, R. L. (1995).Proc. Natl. Acad. Sci. USA. 92, 10964–10968.PubMedGoogle Scholar
  17. Dunn, S. D. (1992).J. Biol Chem. 267, 7630–7636.PubMedGoogle Scholar
  18. Feng, Y., and McCarty, R. E. (1990a).J. Biol. Chem. 265, 12481–12485.PubMedGoogle Scholar
  19. Feng, Y., and McCarty, R. E. (1990b).J. Biol Chem. 265, 5104–5109.PubMedGoogle Scholar
  20. Fimmel, A. L., Jans, D. A., Langman, L., James, L. B., Ash, G. R., Downie, J. A., Senior, A. E., Gibson, F., and Cox, G. B. (1983).Biochem. J. 213, 451–458.PubMedGoogle Scholar
  21. Friedl, P., Hoppe, J., and Schairer, H. U. (1984).Biochem. Biophys. Res. Commun. 120, 527–533.PubMedGoogle Scholar
  22. Fromme, P., Boekema, E. J., and Graber, P. (1987).Z. Naturforsch. 42c, 1239–1245.Google Scholar
  23. Girvin, M. E., and Fillingame, R. H. (1994).Biochemistry 33, 665–674.PubMedGoogle Scholar
  24. Girvin, M. E., Hermolin, J., Pottorf, R., and Fillingame, R. H. (1989).Biochemistry 28, 4340–4343.PubMedGoogle Scholar
  25. Gogol, E. P. (1994).Microsc Res Tech. 27, 294–306.PubMedGoogle Scholar
  26. Hatch, L. P., Cox, G. B., and Howitt, S. M. (1995).J Biol Chem. 270, 29407–29412.PubMedGoogle Scholar
  27. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990).J. Mol Biol. 213, 899–929.PubMedGoogle Scholar
  28. Hermolin, J., and Fillingame, R. H. (1989).J. Biol. Chem. 264, 3896–3903.PubMedGoogle Scholar
  29. Hermolin, J., Gallant, J., and Fillingame, R. H. (1983).J. Biol. Chem. 258, 14550–14555.PubMedGoogle Scholar
  30. Howitt, S. M., Rodgers, A. J. W., Jeffrey, P. D., and Cox, G. B. (1996).J. Biol. Chem. 271, 7038–7042.PubMedGoogle Scholar
  31. Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995).Nature 376, 660–669.PubMedGoogle Scholar
  32. Khananshvili, D., and Gromet-Elhanan, Z. (1982).J. Biol. Chem. 257, 11377–11383.PubMedGoogle Scholar
  33. Kumamoto, C. A., and Simoni, R. D. (1986).J. Biol Chem. 261, 10037–10042.PubMedGoogle Scholar
  34. Kumamoto, C. A., and Simoni, R. D. (1987).J. Biol Chem. 262, 3060–3064.PubMedGoogle Scholar
  35. Lewis, M. J., Chang, J. A., and Simoni, R. D. (1990).J. Biol Chem. 265, 10541–10550.PubMedGoogle Scholar
  36. McDermott, G., Prince, S. M., Freer, A. A., Hawthomewaite-Lawless, A. M., Papiz, A. A., Cogdell, R. J., and Isaacs, N. W. (1995).Nature 374, 517–521.Google Scholar
  37. Miller, M. J., Oldenburg, M., and Fillingame, R. H. (1990).Proc Natl Acad Sci USA 87, 4900–4904.PubMedGoogle Scholar
  38. Mitchell, P. (1985).FEBS Lett. 182, 1–7.PubMedGoogle Scholar
  39. Moroney, J. V., and McCarty, R. E. (1982a).J. Biol Chem. 257, 5915–5920.PubMedGoogle Scholar
  40. Moroney, J. V., and McCarty, R. E. (1982b).J. Biol Chem. 257, 5910–5914.PubMedGoogle Scholar
  41. Norwood, T. J., Crawford, D. A., Steventon, M. E., Driscoll, P. C., and Campbell, I. D. (1992).Biochemistry 31, 6285–6290.PubMedGoogle Scholar
  42. Patrie, W. J., and McCarty, R. E. (1984).J. Biol. Chem. 259, 11121–11128.PubMedGoogle Scholar
  43. Pedersen, P. L., Hullihen, J., Bianchet, M., Amzel, L. M., and Lebowitz, M. S. (1995).J. Biol Chem. 270, 1775–1784.PubMedGoogle Scholar
  44. Rottenberg, H. (1990).Biochim. Biophys. Acta 1018, 1–17.PubMedGoogle Scholar
  45. Schneider, E., and Altendorf, K. (1987).Microbiol. Rev. 51, 477–497.PubMedGoogle Scholar
  46. Steffens, K., Schneider, E., Deckers-Hebestreit, G., and Altendorf, K. (1987).J. Biol. Chem. 262, 5866–5869.PubMedGoogle Scholar
  47. Süss, K.-H. (1986).FEBS Lett. 201, 63–68.Google Scholar
  48. Vik, S. B., and Dao, N. N. (1992).Biochim. Biophys. Acta 1140, 199–207.PubMedGoogle Scholar
  49. Vik, S. B., and Antonio, B. J. (1994).J. Biol Chem. 269, 30364–30369.PubMedGoogle Scholar
  50. Wetzel, C. M., and Mccarty, R. E. (1993a).Plant Physiol. 102, 241–249.PubMedGoogle Scholar
  51. Wetzel, C. M., and McCarty, R. E. (1993b).Plant Physiol. 102, 251–259.PubMedGoogle Scholar
  52. Wilkens, S., Dunn, S. D., and Capaldi, R. A. (1994).FEBS Lett. 354, 37–40.PubMedGoogle Scholar
  53. Xiao, J. P., and McCarty, R. E. (1989).Biochim. Biophys. Acta 976, 203–209.Google Scholar
  54. Zhang, Y., and Fillingame, R. H. (1995).J. Biol. Chem. 270, 24609–24614.PubMedGoogle Scholar
  55. Zhang, Y., Oldenburg, M., and Fillingame, R. H. (1994).J. Biol. Chem. 269, 10221–10224.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Susan M. Howitt
    • 1
  • Andrew J. W. Rodgers
    • 1
  • Lyndall P. Hatch
    • 1
  • Frank Gibson
    • 1
  • Graeme B. Cox
    • 1
  1. 1.Division of Biochemistry and Molecular Biology, The John Curtin School of Medical ResearchAustralian National UnversityCanberraAustralia

Personalised recommendations