Skip to main content
Log in

Conformational transmission in ATP synthase during catalysis: Search for large structural changes

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Escherichia coli ATP synthase has eight subunits and functions through transmission of conformational changes between subunits. Defective mutation at βGly-149 was suppressed by the second mutations at the outer surface of the β subunit, indicating that the defect by the first mutation was suppressed by the second mutation through long range conformation transmission. Extensive mutant/pseudorevertant studies revealed that β/α and β/γ subunits interactions are important for the energy coupling between catalysis and H+ translocation. In addition, long range interaction between amino and carboxyl terminal regions of the γ subunit has a critical role(s) for energy coupling. These results suggest that the dynamic conformation change and its transmission are essential for ATP synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Futai, T. Noumi, and M. Maeda, (1989).Annu. Rev. Biochem. 58, 111–136.

    PubMed  Google Scholar 

  2. R. H. Fillingame. (1990). InThe Bacteria (T. A. Krulwich, eds.) Academic Press, New York, pp. 345–391.

    Google Scholar 

  3. A. E. Senior, (1990).Annu. Rev. Biophys. Chem. 19, 7–41.

    Google Scholar 

  4. M. Futai, and H. Omote. (1996).Handbook of Biological Physics, Vol. II,Transport Processes in Eukaryotic and Prokaryotic Organisms (W. N. Konings and H. R. Kabach, eds.), Elsevier Scientific, Amsterdam, pp. 49–74.

    Google Scholar 

  5. J. P. Abrahams, A. G. W. Leslie, R. Lutter, and J. E. Walker, (1994).Nature 370, 621–628.

    PubMed  Google Scholar 

  6. C. Grubmeyer, R. L. Cross, and H. S. Penefsky, (1982).J. Biol. Chem. 257, 12092–12100.

    PubMed  Google Scholar 

  7. H. S. Penefsky and R. L. Cross, (1991).Adv. Enzymol. 64, 173–213.

    PubMed  Google Scholar 

  8. T. M. Duncan and A. E. Senior, (1985).J. Biol. Chem. 260, 4901–4907.

    PubMed  Google Scholar 

  9. T. Noumi, M. Taniai, H. Kanazawa, and M. Futai, (1986).J. Biol. Chem. 261, 9196–9201.

    PubMed  Google Scholar 

  10. T. Noumi, M. Futai, and H. Kanazawa, (1984).J. Biol. Chem. 259, 10076–10079.

    PubMed  Google Scholar 

  11. S. Soga, T. Noumi, M. Takeyama, M. Maeda, and M. Futai, (1989).Arch. Biochem. Biophys. 268, 643–648.

    PubMed  Google Scholar 

  12. H. Omote, N. P. Le, M.-Y. Park, M. Maeda, and M. Futai, (1995).J. Biol. Chem. 270, 25656–25660.

    PubMed  Google Scholar 

  13. T. Noumi, M. Maeda, and M. Futai, (1987).FEBS Lett. 213, 381–384.

    PubMed  Google Scholar 

  14. M. Tommasino, and R. A. Capaldi, (1985).Biochemistry 24, 3972–3976.

    PubMed  Google Scholar 

  15. G. B. Cox, A. L. Fimmel, F. Gibson, and L. Hatch, (1986).Biochim. Biophys. Acta 849, 62–69.

    PubMed  Google Scholar 

  16. R. N. Lightowelers, S. M. Howitt, L. Hatch, F. Gibson, and G. B. Cox, (1988).Biochim. Biophys. Acta 933, 241–248.

    PubMed  Google Scholar 

  17. R. Aggeler, M. A. Haughton, and R. A. Capaldi, (1995).J. Biol. Chem. 270, 9185–9191.

    PubMed  Google Scholar 

  18. R. P. Kandpal, and P. D. Boyer, (1987).Biochim. Biophvs. Acta 890, 97–105.

    Google Scholar 

  19. T. M. Duncan, U. V. Bulygin, Y. Zhou, M. L. Hutcheon, and R. L. Cross, (1995).Proc. Natl. Acad. Sci. USA 92, 10964–10968.

    PubMed  Google Scholar 

  20. K. Ida, T. Noumi, M. Maeda, T. Fukui, and M. Futai, (1991).J. Biol. Chem. 266, 5424–5429.

    PubMed  Google Scholar 

  21. H. Omote, M. Maeda, and M. Futai, (1992).J. Biol. Chem. 267, 20571–20576.

    PubMed  Google Scholar 

  22. A. E. Senior, and M. K. Al-Shawi, (1992).J. Biol. Chem. 267, 21471–21478.

    PubMed  Google Scholar 

  23. M.-Y. Park, H. Omote, M. Maeda, and M. Futai, (1994).J. Biochem. 116, 1139–1145.

    PubMed  Google Scholar 

  24. A. Iwamoto, H. Omote, H. Hanada, N. Tomioka, A. Itai, M. Maeda, and M. Futai, (1991).J. Biol. Chem. 266, 16350–16355.

    PubMed  Google Scholar 

  25. A. Iwamoto, M.-Y. Park, M. Maeda, and M. Futai, (1993).J. Biol. Chem. 268, 3156–3160.

    PubMed  Google Scholar 

  26. J. Miki, K. Fujiwara, M. Tsuda, T. Tsuchiya, and H. Kanazawa, (1990).J. Biol. Chem. 265, 21567–21572.

    PubMed  Google Scholar 

  27. M. Yoshida, W. S. Allison, F. S. Esch, and M. Futai, (1982).J. Biol. Chem. 257, 10033–10037.

    PubMed  Google Scholar 

  28. F. S. Esch, P. Böhlen, A. S. Otsuka, M. Yoshida, and F. S. Allison, (1981).J. Biol. Chem. 256, 9084–9089.

    PubMed  Google Scholar 

  29. H. Omote, M.-Y. Park, M. Maeda, and M. Futai, (1994).J. Biol. Chem. 269, 10265–10269.

    PubMed  Google Scholar 

  30. R. K. Nakamoto, K. Shin, A. Iwamoto, H. Omote, M. Maeda, and M. Futai, (1992).Ann. NY. Acad. Sci. 671, 335–344.

    PubMed  Google Scholar 

  31. A. Iwamoto, J. Miki, M. Maeda, and M. Futai, (1990).J. Biol. Chem. 265, 5043–5048.

    PubMed  Google Scholar 

  32. K. Shin, R. K. Nakamoto, M. Maeda, and M. Futai, (1992).J. Biol. Chem. 267, 20835–20839.

    PubMed  Google Scholar 

  33. R. K. Nakamoto, M. Maeda, and M. Futai, (1993).J. Biol. Chem. 268, 867–872.

    PubMed  Google Scholar 

  34. R. K. Nakamoto, M. K. Al-Shawi, and M. Futai, (1995).J. Biol. Chem. 270, 14042–14046.

    PubMed  Google Scholar 

  35. D. A. Bullough, E. A. Ceccarelli, J. G. Verburg, and W. S. Allison, (1989).J. Biol. Chem. 264, 9155–9163.

    PubMed  Google Scholar 

  36. J. Mendel-Hartvig, and R. A. Capaldi, (1991).Biochemistry 30, 1278–1284.

    PubMed  Google Scholar 

  37. H. G. Dallmann, T. G. Flynn, and S. D. Dunn, (1992).J. Biol. Chem. 267, 18953–18960.

    PubMed  Google Scholar 

  38. M. A. Haughton, R. A. Capaldi, (1995).J. Biol. Chem. 270, 20568–20574.

    PubMed  Google Scholar 

  39. C. Jeanteur-DeBeukelar, H. Omote, A. Iwamoto-Kihara, M. Maeda, and M. Futai (1995).J. Biol. Chem. 270, 22850–22854.

    PubMed  Google Scholar 

  40. M. Futai, H. Omote, and M. Maeda, (1995).Biochem. Soc. Trans. 23, 785–790.

    PubMed  Google Scholar 

  41. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, (1995).Nature 374, 555–559.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futai, M., Omote, H. Conformational transmission in ATP synthase during catalysis: Search for large structural changes. J Bioenerg Biomembr 28, 409–414 (1996). https://doi.org/10.1007/BF02113982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02113982

Key words

Navigation