Acta Biotheoretica

, Volume 25, Issue 1, pp 44–65 | Cite as

Positional information in the amphibian limb

  • J. Faber


(1) The concept of positional information is applied to a large amount of data obtained previously in experiments on developing and regenerating amphibian limbs. Only the proximo-distal axis of the limb is considered. It is shown that the concept provides a simple, unitary hypothesis which satisfactorily accounts for the experimental data, and may moreover suggest meaningful new approaches. (2) It is suggested that the boundaries of the bipolar limb system lie in the girdle skeleton and at the distal end of the limb, respectively, and that it is the apical epidermis of the growing or regenerating limb which defines the distal boundary conditions. A relatively stable gradient of positional information is assumed to be set up in the mesoderm (or mesenchyme). It is further shown that the differentiated limb retains its positional information and upon amputation imparts it to the base of the blastema. (3) To explain an apparent discrepancy between the developing and the regenerating limb, it is proposed that dedifferentiation of mesodermal limb tissues upon amputation entails a change of positional value in the mesenchyme. Consequently, the amputation level does not once and for all specify the positional value at the proximal end of a mass of blastemal mesenchyme, particularly when the mesenchyme is transplanted in such a way that its linear size decreases (regression) or increases (fusion of several blastemas).


Boundary Condition Apparent Discrepancy Limb System Linear Size Positional Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amprino, R. (1965). Aspects of limb morphogenesis in the chicken. - In: R. L. DeHaan & H. Ursprung, ed., Organogenesis, p. 255–281.-New York, Academic Press.Google Scholar
  2. Bohn, H. (1970a). Interkalare Regeneration und segmentale Gradienten bei den Extremitaten von Leucophaea-Larven (Blattaria). I. Femur und Tibia. -Roux Arch. EntwMech. Organ.165, p. 303–341.Google Scholar
  3. Bohn, H. (1970b). Interkalare Regeneration und segmentale Gradienten bei den Extremitaten von Leucophaea-Larven (Blattaria). II. Coxa und Tarsus. -Developm. Biol.23, p. 355–379.Google Scholar
  4. Both, N. J. de (1965). Enhancement of the self-differentiation capacity of the early limb blastema by various experimental procedures. - In: V. Kiortsis & H. A. L. Trampusch, ed., Regeneration in animals and related problems, p. 420–425. -Amsterdam, North Holland Publ. Co.Google Scholar
  5. Both, N. J. de (1970). The development potencies of the regeneration blastema of the axolotl limb. -Roux Arch. EntwMech. Organ.165, p. 242–276.Google Scholar
  6. Butler, E. G. (1955). Regeneration of the urodele forelimb after reversal of its proximo-distal axis.-J. Morph.96, p. 265–281.Google Scholar
  7. Deck, J. D. (1955). The innervation of urodele limbs of reversed proximo-distal polarity.-J. Morph.96, p. 301–332.Google Scholar
  8. Dent, J. N. (1954). A study of regenerates emanating from limb transplants with reversed proximo-distal polarity in the adult newt.-Anat. Rec.118, p. 841–856.Google Scholar
  9. Dinsmore, C. E. (1974).Morphogenetic interactions between minced limb muscle and transplanted blastemas in the axolotl.-J. exp. Zool.187, p. 223–232.Google Scholar
  10. Dober, E. (1968). Die Wachstumsweise von Vorderbeinknospen vonXenopus laevis Daud.-Rev. suisse Zool.75, p. 523–531.Google Scholar
  11. Faber, J. (1960). An experimental analysis of regional organization in the regenerating fore limb of the axolotl (Ambystoma mexicanum).-Arch. Biol. (Liège)71, p. 1–72.Google Scholar
  12. Faber, J. (1965). Autonomous morphogenetic activities of the amphibian regeneration blastema.-In: V. Kiortsis & H. A. L. Trampusch, ed., Regeneration in animals and related problems, p. 404–4190.-Amsterdam, North Holland Publ. Co.Google Scholar
  13. Faber, J. (1971). Vertebrate limb ontogeny and limb regeneration: morphogenetic parallels.-Advanc. Morphogenesis.9, p. 127–147.Google Scholar
  14. Faber, J. & N. J. de Both (1970). The role of innervation in the manifestation of the digits in transplanted regeneration blastemas of the axolotl (Ambystoma mexicanum). -Arch. Biol. (Liège)81, p. 215–227.Google Scholar
  15. Guydnot, E., J. Dinichert-Favarger & M. Galland (1948). L'exploration du territoire de la patte antdrieure du Triton (asymdtrie, duplicature, orientation des régénérats). -Rev. suisse Zool.55 (suppl. 2), p. 1–120.Google Scholar
  16. Hearson, L. E. (1966). An analysis of apical proliferation in the fore-limb regeneration blastema of the axolotlAmbystoma mexicanum. -Ph.D.Thesis, Mich. State Univ., East Lansing, Mich.Google Scholar
  17. Hornbruch, A. & L. Wolpert (1970). Cell division in the early growth and morphogenesis of the chick limb.-Nature, Lond.226, p. 764–766.Google Scholar
  18. Iten, L. E. & S. V. Bryant (1975). The interaction between the blastema and stump in the establishment of the anterior-posterior and proximo-distal organization of the limb regenerate.-Developm. Biol.44, p. 119–147.Google Scholar
  19. Janners, M. Y. & R. L. Searls (1971). Effect of removal of the apical ectodermal ridge on the rate of cell division in the subridge mesenchyme of the embryonic chick wing.-Developm. Biol.24, p. 465–476.Google Scholar
  20. Kieny, M. (1967). Phénomènes de regulation de l'ébauche de membre chez l'embryon de poulet. Ergebn. Anat. EntwMech.39 (4), p. 7–37.Google Scholar
  21. Michael, M. I. & J. Faber (1971). Morphogenesis of mesenchyme from regeneration blastemas in the absence of digit formation inAmbystoma mexicanum. -Roux Arch. EntwMech. Organ.168, p. 174–180.Google Scholar
  22. Oberheim, K. W. & W. Luther (1958). Versuche über die Extremitënregeneration von Salamanderlarven bei umgekehrter Polarität des Amputationsstumpfes.-Roux Arch. Entw Mech. Organ.150, p. 373–382.Google Scholar
  23. Oberpriller, J. C. (1968). The action of X-irradiation on the regeneration field of the forelimb of the adult newt. -J. exp. Zool.168, p. 403–421.Google Scholar
  24. Ouweneel, W. J. (1972). Determination, regulation, and positional information in insect development.-Acta biotheor. Leiden21, p. 115–131.Google Scholar
  25. Rubin, L. & J. W. Saunders (1972). Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction.-Developm. Biol.28, p. 94–112.Google Scholar
  26. Shuraleff, N. C. & C. S. Thornton (1967). An analysis of distal dominance in the regenerating limb of the axolotl.-Experientia23, p. 747–751.Google Scholar
  27. Stark, R. J. & R. L. Searls (1973). A description of chick wing development and a model of limb morphogenesis.-Developm. Biol.33, p. 138–153.Google Scholar
  28. Stebler, R. (1973). Die Morphologie der apikalen Epidermis wahrend der frün Extremitäten-entwicklung bei Anuren.-Roux Arch. EntwMech. Organ.172, p. 131–148.Google Scholar
  29. Stocum, D. L. (1968). The urodele limb regeneration blastema: a self-organizing system. II. Morphogenesis and differentiation of autografted whole and fractional blastemas.-Developm. Biol.18, p. 457–480.Google Scholar
  30. Stocum, D. L. (1975a). Outgrowth and pattern formation during limb ontogeny and regeneration.-Differentiation3, p. 167–182.Google Scholar
  31. Stocum, D. L. (1975b). Regulation after proximal or distal transposition of limb regeneration blastemas and determination of the proximal boundary of the regenerate. -Developm. Biol.45, p. 112–136.Google Scholar
  32. Stocum, D. L. & G. E. Dearlove (1972). Epidermal -mesodermal interaction during morphogenesis of the limb regeneration blastema in larval salamanders. -J. exp. Zool.181, p. 49–62.Google Scholar
  33. Takaya, H. (1941). Experimental study on limb-asymmetry.-Annot. zool. jap.20, p. 181–279.Google Scholar
  34. Tarin, D. & A. P. Sturdee (1971). Early limb development ofXenopus laevis.-J. Embryol. exp. Morph.26, p. 169–179.Google Scholar
  35. Thornton, C. S. (1968). Amphibian limb regeneration. -Advanc. Morphogen.7, p. 205–249.Google Scholar
  36. Thornton, C. S. & M. T. Thornton (1965). The regeneration of accessory limb parts following epidermal cap transplantation in urodeles. -Experientia21, p. 1–6.Google Scholar
  37. Tschumi, P. A. (1957). The growth of the hindlimb bud of Xenopus laevis and its dependence upon the epidermis. -J. Anat., London91, p. 149–173.Google Scholar
  38. Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. -J. theor. Biol.25, p. 1–47.Google Scholar
  39. Wolpert, L. (1971). Positional information and pattern formation. -Curr. Topics developm. Biol.6, p. 183–224.Google Scholar
  40. Zwilling, E. (1961). Limb morphogenesis.-Advanc. Morphogen.1, p. 301–330.Google Scholar

Copyright information

© Leiden University Press 1976

Authors and Affiliations

  • J. Faber
    • 1
  1. 1.Hubrecht LaboratoryUtrechtNetherlands

Personalised recommendations