Periodica Mathematica Hungarica

, Volume 25, Issue 2, pp 179–190 | Cite as

Sequences of polynomials whose zeros lie on fixed lemniscates

  • K. Dilcher
  • K. B. Stolarsky


For fixed integersk≥2 we study sequences of polynomialsP n (z) with the following properties: (i) degP n → ∞; (ii) the zeros of all theP n (z) lie on a certain lemniscate withk1k foci, one of which is the origin; (iii) theP n (z) can be cut in such a way that the zeros of the “lower part” all lie on the unit circle and those of the “upper part” lie on a lemniscate having the foci in (ii) excluding the origin. Several special cases and examples are considered.

Mathematics subject classification numbers, 1991

Primary 30-XX 

Key words and phrases

Sequences of polinomials lemniscate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.AAbramowitz and I. A.Stegun,Handbook of Mathematical Functions, National Bureau of Standards, Washington 1970.Google Scholar
  2. [2]
    G. E.AAndrews,The Theory of Partitions, Encyclopedia of Mathematics and Its Applications,Vol. 2, Addison-Wesley, Reading, Massachusetts 1976.Google Scholar
  3. [3]
    B. B.Bredihin, Algebraic analogues of some additive problems (Russian);Uspekhi Mat. Nauk,16 (1961), no. 4 (100), 137–139.Google Scholar
  4. [4]
    H. J.Fell, On the zeros of convex combinations of polynomials,Pacific J. Math. 89 (1980), 43–50.Google Scholar
  5. [5]
    H.Halberstam and H.-E.Richert,Sieve Methods, Academic Press, London 1974.Google Scholar
  6. [6]
    D. R.Hayes, A Goldbach theorem for polynomials with integral coefficients,Amer. Math. Monthly,72 (1965), 45–46.Google Scholar
  7. [7]
    E.Hille,Analytic Function Theory,Vol. II, Ginn and Company, Boston 1962.Google Scholar
  8. [8]
    M.Marden,Geometry of Polynomials,Amer. Math. Society, Providence 1966.Google Scholar
  9. [9]
    J. L.NNicolas et A.Schinzel, Localisation des zeros de polynômes intervenant en théorie du signal. In: M. Langevin and M. Waldschmidt (Eds.),Cinquante Ans de Polynômes — Fifty Years of Polynomials, 167–179. Lecture Notes in Mathematics 1415, Springer-Verlag, Berlin-Heidelberg, 1990.Google Scholar
  10. [10]
    Q. I.Rahman, Zeros of linear combinations of polynomials,Canad. Math. Bull. 15 (1972), 139–142.Google Scholar
  11. [11]
    J. L.Walsh,Interpolation and Approximation by Rational Functions in the Complex Domain, 5th ed., Amer. Math. Society, Providence 1969.Google Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • K. Dilcher
    • 1
  • K. B. Stolarsky
    • 2
  1. 1.Department of Mathematics Statistics and Computing ScienceDalhousie UniversityHalifaxCanada
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations