Periodica Mathematica Hungarica

, Volume 25, Issue 2, pp 161–165 | Cite as

Distributive multiplication rings

  • S. Feigelstock
  • R. Raphael


A ringR is said to be a left (right)n-distributive multiplication ring, n>1 a positive integer, if (a1a2...ana=a1aa2a...ana) for all a, a1,...,anR. It will be shown that the semi-primitive left (right)n-distributive rings are precisely the generalized boolean ringsA satisfying an=a for all a ∋A. An arbitrary left (right)n-distributive multiplication ring will be seen to be an extension of a nilpotent ringN satisfyingNn+1=0 by a generalized boolean ring described above. Under certain circumstances it will be shown that this extension splits.

Mathematics subject classification numbers, 1991

Primary 16A48 

Key words and phrases

n-distributive multiplication ring boolean ring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.Sirkenmeier, H.Heatherly and T.Kepka, Rings with left distributive multiplication, submitted.Google Scholar
  2. [2]
    S.Feigelstock, Rings all of whose endomorphisms aren-multiplicative,Bull. Austr. Math. Soc. Vol.39 (1989), 11–14.Google Scholar
  3. [3]
    N.McCMcCoy,The Theory of Rings, Macmillan, New York, 1967.Google Scholar
  4. [4]
    M.Petrich, Structure des demi-groupes et anneaux distributifs,C. R. Acad. Sci. Paris Ser. A-B (1969), A849–A852.Google Scholar
  5. [5]
    R. P.Sullivan, Research problems,Period. Math. Hung. 8 (1977), 313–314.Google Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • S. Feigelstock
    • 1
  • R. Raphael
    • 2
  1. 1.Bar Ilan UniversityRamat-GanIsrael
  2. 2.Concordia UniversityMontrealCanada

Personalised recommendations