General Relativity and Gravitation

, Volume 28, Issue 8, pp 905–917 | Cite as

Cosmological PPN formalism and non-Machian gravitational theories

  • G. Dautcourt
Article

Abstract

By turning to a differential formulation, the post-Newtonian description of metric gravitational theories (ppn formalism) has been extended to include cosmological boundary conditions. The dimensionless expansion parameter is the ratio distanceL (measured from the center of a selected space region) to Hubble distancec/H0. The aim was to explore the significance and applicability of a Newtonian cosmology and to clarify to some extent its relation to general-relativistic cosmology. It turns out that up to post-Newtonian order two classes of gravitational theories can be distinguished, here called Machian and non-Machian. In a non-Machian theory like General Relativity the dynamics of cosmic objects within a space regionL« c/H0. is described by the usualppn metric set up for the objects, without introducing time-dependent Newtonian potentials at the origin of theppn coordinate system. Such potentials of obviously cosmological origin seem to be required for the majority of (by our definition) Machian gravitational theories (including, e.g., Brans-Dicke). Conditions for a theory to be Machian or non-Machian are given in terms of algebraic relations for theppn parameters.

Keywords

Boundary Condition Coordinate System General Relativity Differential Geometry Differential Formulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brill, D. R. (1995). InMach's Principle: From Newton's Bucket to Quantum Gravity, J. Barbour, H. Pfister, eds. (Einstein Studies, vol.6, Birkhäuser, Boston).Google Scholar
  2. 2.
    Barbour, J. B. (1995). InMach's Principle: From Newton's Bucket to Quantum Gravity, J. Barbour, H. Pfister, eds. (Einstein Studies, vol.6, Birkhäuser, Boston).Google Scholar
  3. 3.
    Callan, C., Dicke, R. H., and Peebles, P. J. E. (1965).Amer. J. Phys. 33, 105.Google Scholar
  4. 4.
    Chandrasekhar, S., and Contopoulos, G. (1967).Proc. Roy. Soc. London A 298, 123.Google Scholar
  5. 5.
    Dautcourt, G. (1990).Acta Phys. Pol. B 21, 755.Google Scholar
  6. 6.
    Ehlers, J. (1981). InGrundlagenprobleme der Modernen Physik, J. Nitsch, J. Pfarr, E. W. Stachow, eds. (Bibliographisches Institut, Mannheim).Google Scholar
  7. 7.
    Heckmann, O., and Schücking, E. (1959).Handbuch der Physik 15, 489 (Springer-Verlag, Berlin).Google Scholar
  8. 8.
    Heckmann, O., and Schücking, E. (1955).Zeitschrift f. Astrophysik 38, 94.Google Scholar
  9. 9.
    Heckmann, O., and Schücking, E. (1956).Zeitschrift f. Astrophysik 40, 81.Google Scholar
  10. 10.
    Lottermoser, G. (1988). Ph.D. thesis, Munich.Google Scholar
  11. 11.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).Google Scholar
  12. 12.
    Nordtvedt, K. (1993).Astrophys. J. 407, 5.Google Scholar
  13. 13.
    Trautman, A. (1966). InPerspectives in Geometry and Relativity, B. Hoffmann, ed. (Indiana University Press, Bloomington and London), p.413.Google Scholar
  14. 14.
    Will, C. M. (1993).Theory and Experiment in Gravitational Physics (revised ed., Cambridge University Press, Cambridge).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • G. Dautcourt
    • 1
  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations