Skip to main content
Log in

Stochastic gravity

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate stochastic gravity as a potentially fruitful avenue for studying quantum effects in gravity. Following the approach of stochastic electrodynamics (sed), as a representation of the quantum gravity vacuum we construct a classical state of isotropic random gravitational radiation, expressed as a spin-2 field,h µυ (x), composed of plane waves of random phase on a flat spacetime manifold. Requiring Lorentz invariance leads to the result that the spectral composition function of the gravitational radiation,h(ω), must be proportional to 1/ω 2. The proportionality constant is determined by the Planck condition that the energy density consist ofħω/2 per normal mode, and this condition sets the amplitude scale of the random gravitational radiation at the order of the Planck length, giving a spectral composition functionh(ω) =√16πc 2Lp2. As an application of stochastic gravity, we investigate the Davies-Unruh effect. We calculate the two-point correlation function (R iojo(Oτδτ/2)R kolo(O,τ+δτ/2)) of the measureable geodesic deviation tensor field,R iojo, for two situations: (i) at a point detector uniformly accelerating through the random gravitational radiation, and (ii) at an inertial detector in a heat bath of the random radiation at a finite temperature. We find that the two correlation functions agree to first order inaδτ/c provided that the temperature and acceleration satisfy the relationkT=ħa/2πc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Planck, M. (1911).Verh. Deutsch. Phys. Ges. 13, 138; (1912).Ann. Phys. (Leipzig) 37, 642.

    Google Scholar 

  2. Nernst, W. (1916).Verh. Deutsch. Phys. Ges. 18, 83.

    Google Scholar 

  3. Einstein, A., and Stern, O. (1913).Ann. Phys. (Leipzig) 40, 551.

    Google Scholar 

  4. Lamb, W. E., Jr., and Retherford, R. C. (1957).Phys. Rev. 72, 241; Lamb, W. E., Jr. (1951).Rep. Progr. Phys. 14, 19.

    Google Scholar 

  5. Louisell, W. H. (1964).Radiation and Noise in Quantum Electronics (McGraw-Hill, New York).

    Google Scholar 

  6. Casimir, H. B. K. (1948).Proc. Kon. Ned. Akad. Wet. 51, 793; Sparnaay, M. J. (1958).Physica (Utrecht) 24, 751; Derjaguin, B. V., Rabinovich, Y. I., and Churaev, N. V. (1979).Nature (London) 272, 313; Arnold, W., Hunklinger, S., and Dransfield, K. (1979).Phys. Rev. B 19, 6049.

    Google Scholar 

  7. Casimir, H. B. K., and Polder, D. (1948).Phys. Rev. 73, 360; Sukenkik, C. L., Boshier, M. G., Cho, D., Sandoghdar, V., and Hinds, E. A. (1993).Phys. Rev. Lett. 70, 560.

    Google Scholar 

  8. Gabrielse, G., and Dehmelt, H. (1985).Phys. Rev. Lett. 55, 67; Hulet, R. G., Hilfer, E. S., and Kleppner, D. (1985).Phys. Rev. Lett. 55, 2137; Jhe, W., Anderson, W. A., Hinds, E. A., Meschede, D., Moi, L., and Haroche, S. (1987).Phys. Rev. Lett. 58, 666; DeMartini, F., Innocenti, G., Jacobovitz, G. R., and Mataloni, P. (1987).Phys. Rev. Lett. 59, 2955; Goy, P., Raimond, J. M., Gross, M., and Haroche, S. (1983).Phys. Rev. Lett. 58, 1903; Heinzen, D. J., Childs, J. J., Thomas, J. F., and Feld, M. S. (1987).Phys. Rev. Lett. 58, 1320; Rempe, G., and Walther, H. (1987).Phys. Rev. Lett. 58, 353.

    Google Scholar 

  9. Davies, P. C. W. (1975).J. Phys. A 8, 609.

    Google Scholar 

  10. Unruh, W. G. (1976).Phys. Rev. D 14, 870.

    Google Scholar 

  11. Marshall, T. W. (1963).Proc. Roy. Soc. Lond. 276A, 475; (1965).Proc. Cambridge Phil. Soc. 61, 537.

    Google Scholar 

  12. Boyer, T. H. (1969).Phys. Rev. 182, 1374.

    Google Scholar 

  13. Marshall, T. W. (1963).Proc. Roy. Soc. Lond. 276A, 475; Boyer, T. H. (1973).Phys. Rev. A 7, 1832; (1980).Phys. Rev. A 21, 66; Milonni, P. W., Cook, R. J., and Goggin, M. E. (1988).Phys. Rev. A 38, 1621; Milonni, P. W. (1988).Physica Scripta T21, 102.

    Google Scholar 

  14. Milonni, P. W. (1976).Phys. Rep. 25, 1.

    Google Scholar 

  15. Haisch, B., Rueda, A., and Puthoff, H. E. (1994).Phys. Rev. A 49, 678.

    Google Scholar 

  16. de la Peña, L. (1983). InStochastic Processes Applied to Physics and other Related Fields, B. Gomez, S. M. Moore, A. M. Rodriguez-Vargas, and A. Rueda, eds. (World Scientific, Singapore).

    Google Scholar 

  17. Gross, D. J., Harvey, J. A., Martinec, E., and Rohm, R. (1985).Phys. Rev. Lett. 54, 502; Candelas, P., Horowitz, G. T., Strominger, A., and Witten, E. (1985).Nucl. Phys. B 258, 46; Witten, E. (1985).Phys. Lett. B155, 151; (1985).Nucl. Phys. B 258, 75.

    Google Scholar 

  18. DeWitt, B. S. (1967).Phys. Rev. 160, 1113;162, 1195;162, 1239.

    Google Scholar 

  19. Hawking, S. W. (1978).Phys. Rev. D 18, 1747.

    Google Scholar 

  20. Weinberg, S. (1965).Phys. Rev. B 138, 988.

    Google Scholar 

  21. Deser, S. (1970).Gen. Rel. Grav. 1, 9.

    Google Scholar 

  22. Boyer, T. H. (1980).Phys. Rev. D 21, 2137.

    Google Scholar 

  23. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).

    Google Scholar 

  24. Bjorkin, J. D., and Drell, S. D. (1964).Relativistic Quantum Mechanics (McGraw-Hill, New York).

    Google Scholar 

  25. Hacyan, S., Sarimiento, A., Gocho, G., and Soto, F. (1985).Phys. Rev. D 32, 914.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, D.K., Moreau, W. Stochastic gravity. Gen Relat Gravit 27, 845–858 (1995). https://doi.org/10.1007/BF02113067

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02113067

Keywords

Navigation