General Relativity and Gravitation

, Volume 27, Issue 8, pp 813–819 | Cite as

Mass and energy in General Relativity

  • Yuri Bozhkov
  • Waldyr A. RodriguesJr.


We consider the Denisov-Solov'ov example which shows that the inertial mass is not well defined in General Relativity. It is shown that the mathematical reason why this is true is a wrong application of the Stokes theorem. Then we discuss the role of the order of asymptotically flatness in the definition of the mass. In conclusion some comments on conservation laws in General Relativity are presented.


General Relativity Differential Geometry Mathematical Reason Inertial Mass Asymptotically Flatness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).Google Scholar
  2. 2.
    Wald, R. (1984).General Relativity (University of Chicago Press), Chicago.Google Scholar
  3. 3.
    Sachs, R. K., Wu, H. (1977).General Relativity for Mathematicians (Springer-Verlag, New York).Google Scholar
  4. 4.
    Logunov, A., Mestvirishvili, M. (1989).The Relativistic Theory of Gravitation (Mir, Moscow).Google Scholar
  5. 5.
    Thirring, W., Wallner, R. (1978).Brazilian J. Phys. 8, 686.Google Scholar
  6. 6.
    Denisov, V. I., Solov'ov, V. O. (1983).Theor. Math. Phys. 56, 832.Google Scholar
  7. 7.
    Schoen, R., Yau, S.-T. (1979).Commun. Math. Phys. 65, 45.Google Scholar
  8. 8.
    Schoen, R., Yau, S.-T. (1979).Commun. Math. Phys. 79, 231.Google Scholar
  9. 9.
    Bando, S., Kasue, A., Nakajima, H. (1989).Invent. Math. 97, 313.Google Scholar
  10. 10.
    Bartnik, R. (1986).Commun. Pure App. Math. XXXIX, 661.Google Scholar
  11. 11.
    Ashtekar, A. (1980). InGeneral Relativity and Gravitation, A. Held, ed. (Plenum Press, New York), vol. 2.Google Scholar
  12. 12.
    LeBrun, C. (1988).Commun. Math. Phys. 118, 591.Google Scholar
  13. 13.
    Dalton, K. (1989).Gen. Rel. Grav. 21, 533.Google Scholar
  14. 14.
    Vargas, J. G., Torr, D. G. (1991).Gen. Rel. Grav. 23, 713.Google Scholar
  15. 15.
    Benn, I. M. (1982).Ann. Inst. H. Poincaré XXXVIIA, 67.Google Scholar
  16. 16.
    Ferraris, M., Francaviglia, M. (1992).Class. Quant. Grav. 9, S79.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Yuri Bozhkov
    • 1
    • 2
  • Waldyr A. RodriguesJr.
    • 1
  1. 1.Instituto de Matemática, Estatística e Ciência de ComputaçãoIMECC - UNICAMPCampinas, SPBrazil
  2. 2.Department of Mathematical SciencesUniversity of TriesteTriesteItaly

Personalised recommendations