Skip to main content
Log in

A characterization of Cauchy kernels

  • Research Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

Summary

If Φ is a function of one variable, itsnth order Cauchy kernel is defined by

$$\mathop K\limits_n \Phi (x_1 ,...,x_n ) = \sum\limits_{r = 1}^n {( - 1)^{n - r} \sum\limits_{\left| J \right| = r} {\Phi (x_J )} }$$

where ∅ ≠J \( \subseteq\) I n = {1, 2,⋯,n} andx J = ∑ j ∈ J x j . Iff is a function ofn variable, itsith partial Cauchy kernel of ordern,\(\mathop K\limits_n^{(i)} f\), is its Cauchy kernel of ordern with respect to its ith variable with all the other variables held fixed. Forn = 2 the Kurepa functional equation can be expressed by

$$\begin{gathered} \mathop K\limits_2^{(1)} f(x_1 ,x_2 ;x_3 ) = f(x_1 + x_2 ,x_3 ) - f(x_1 ,x_3 ) - f(x_2 ,x_3 ) \hfill \\ {\mathbf{ }} = f(x_1 ,x_2 + x_3 ) - f(x_1 ,x_2 ) - f(x_1 ,x_3 ) = \mathop K\limits_2^{(2)} f(x_1 ,x_2 ,x_3 ) \hfill \\\end{gathered} $$

. Here it is shown that

$$\mathop K\limits_2^{(i)} f = \mathop K\limits_2^{(j)} f{\mathbf{ }}for{\mathbf{ }}i,j = 1,2,...,n$$
((*))

characterizes symmetric functions of the formf =\(\mathop K\limits_n\) Φ and that the general solution of (*) is given byf =\(\mathop K\limits_n\) Φ +A whereA isn-multiadditive with ∑ σ ∈Sn A(x σ(1),⋯,x σ(n) )=0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J.,Lectures on functional equations and their applications. Academic Press, New York, 1966.

    Google Scholar 

  2. Aczél, J.,The general solution of two functional equations by reduction to functions additive in two variables and with the aid of Hamel bases. Glasnik Mat.-Fiz. Astronom. (2)20 (1965), 65–73.

    Google Scholar 

  3. Ebanks, B. R.,Kurepa's functional equation on Gaussian semigroups. In Functional Equations: History, Applications and Theory. D. Reidel, Dordrecht, 1984, pp. 167–173.

    Google Scholar 

  4. Erdös, J.,A remark on the paper “On some functional equations” by S. Kurepa. Glasnik Mat.-Fiz. Astronom. (2).14 (1959), 3–5.

    Google Scholar 

  5. Fenyö, I.,On the general solution of a system of functional equations. Aequationes Math.26 (1984), 236–237.

    Google Scholar 

  6. Fischer, P. andHeuvers, K. J.,Composite n-forms and Cauchy kernels. Aequationes Math.32 (1987), 63–73.

    Google Scholar 

  7. Heuvers, K. J.,Functional equations which characterize n-forms and homogeneous functions of degree n. Aequationes Math.22 (1981), 223–248.

    Google Scholar 

  8. Hosszú, M.,On a functional equation treated by S. Kurepa. Glasnik Mat.-Fiz. Astronom. (2)18 (1963), 59–60.

    Google Scholar 

  9. Kurepa, S.,On some functional equations. Glasnik Mat.-Fiz. Astronom. (2)11 (1956), 3–5.

    Google Scholar 

  10. Mazur, S. andOrlicz, W.,Grundlegende Eigenschaften der polynomischen Operationen. Studia Math.5 (1934), 50–68, 179–189.

    Google Scholar 

  11. Mitrinovic, D. S. andDjokovic, D. Z.,Sur quelques équations fonctionnelles. Publ. Inst. Math. (Beograd) (N.S.)1(15 (1961), 67–73 (1962).

    Google Scholar 

  12. Ng, C. T.,Remark 6 to Problem 5(ii) of I. Fenyö. Aequationes Math.26 (1984), 262–263.

    Google Scholar 

  13. Van Der Lijn, G.,La définition des polynômes dans les groupes abeliens. Fund. Math.33 (1945), 42–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Istvan Fenyö (1971–1987)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuvers, K.J. A characterization of Cauchy kernels. Aeq. Math. 40, 281–306 (1990). https://doi.org/10.1007/BF02112301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02112301

AMS (1980) subject classification

Navigation