# On the identric and logarithmic means

• Research Papers
• Published:

## Summary

Leta, b > 0 be positive real numbers. The identric meanI(a, b) of a andb is defined byI = I(a, b) = (1/e)(b b /a a ) 1/(b−a), fora ≠ b, I(a, a) = a; while the logarithmic meanL(a, b) ofa andb isL = L(a, b) = (b − a)/(logb − loga), fora ≠ b, L(a, a) = a. Let us denote the arithmetic mean ofa andb byA = A(a, b) = (a + b)/2 and the geometric mean byG =G(a, b) =$$\sqrt {ab}$$. In this paper we obtain some improvements of known results and new inequalities containing the identric and logarithmic means. The material is divided into six parts. Section 1 contains a review of the most important results which are known for the above means. In Section 2 we prove an inequality which leads to some improvements of known inequalities. Section 3 gives an application of monotonic functions having a logarithmically convex (or concave) inverse function. Section 4 works with the logarithm ofI(a, b), while Section 5 is based on the integral representation of means and related integral inequalities. Finally, Section 6 suggests a new mean and certain generalizations of the identric and logarithmic means.

This is a preview of subscription content, log in via an institution to check access.

## Subscribe and save

Springer+ Basic
\$34.99 /Month
• Get 10 units per month
• 1 Unit = 1 Article or 1 Chapter
• Cancel anytime

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

## References

1. Alzer, H.,Two inequalities for means. C.R. Math. Rep. Acad. Sci. Canada.9 (1987), 11–16.

2. Alzer, H.,Ungleichungen für Mittelwerte. Arch. Math. (Basel)47 (1986), 422–426.

3. Alzer, H.,On an inequality of Ky Fan. J. Math. Anal. Appl.137 (1989), 168–172.

4. Beckenbach, E. F. andBellman, R.,Inequalities. Springer, New York, 1965.

5. Carlson, B. C.,Some inequalities for hypergeometric functions. Proc. Amer. Math. Soc.17 (1966), 32–39.

6. Carlson, B. C.,The logarithmic mean. Amer. Math. Monthly79 (1972), 615–618.

7. Hardy, G. H., Littlewood, J. E. andPolya, G.,Inequalities. Cambridge Univ. Press, Cambridge—New York, 1988.

8. Leach, E. B. andSholander, M. C.,Extended mean values II. J. Math. Anal. Appl.92 (1983), 207–223.

9. Lin, T. P.,The power mean and the logarithmic mean. Amer. Math. Monthly81 (1974), 879–883.

10. Mitrinovic, D. S. (in cooperation withP. M. Vasic),Analytic Inequalities. Springer, Berlin—Heidelberg—New York, 1970.

11. Ostle, B. andTerwilliger, H. L.,A comparison of two means. Proc. Montana Acad. Sci.17 (1957), 69–70.

12. Rüthing, D.,Eine allgemeine logarithmische Ungleichung. Elem. Math.41 (1986), 14–16.

13. Sándor, J.,Some integral inequalities. Elem. Math.43 (1988), 177–180.

14. Sándor, J.,An application of the Jensen — Hadamard inequality. To appear in Nieuw Arch. Wisk. (4)8 (1990).

15. Sándor, J.,On an inequality of Ky Fan. To appear in Sem. Math. Anal., Babes—Bolyai Univ.

16. Seiffert, H.-J.,Eine Integralungleichung für streng monotone Funktionen mit logarithmische konvexer Umkehrfunktion. Elem. Math.44 (1989), 16–17.

17. Stolarsky, K. B.,Generalizations of the logarithmic mean. Math. Mag.48 (1975), 87–92.

18. Stolarsky, K. B.,The power and generalized logarithmic means. Amer. Math. Monthly87 (1980), 545–548.

19. Zaiming, Z.,Problem E 3142. Amer. Math. Monthly93 (1986), 299.

Authors

## Rights and permissions

Reprints and permissions

Sándor, J. On the identric and logarithmic means. Aeq. Math. 40, 261–270 (1990). https://doi.org/10.1007/BF02112299