Advertisement

Non-canonical mechanisms of antibiotic resistance

  • J. L. Martínez
  • J. Blázquez
  • F. Baquero
Review

Abstract

Although the current in vitro methods used for detection and analysis of the phenotypes of antibiotic resistance in the laboratory are well established, other resistance mechanisms of resistance exist which may escape detection using the standard approach. The present article reviews some of these mechanisms which are grouped under the term ‘non-canonical mechanisms’ of antibiotic resistance. Such mechanisms include gene dosage, heterologous induction or selection, populational resistance and synergism between mechanisms of low resistance. The role of these mechanisms in the failure of therapy is discussed.

Keywords

Internal Medicine Antibiotic Resistance Present Article Resistance Mechanism Standard Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Courvalin P: Interpretative reading of antimicrobial susceptibility tests. ASM News 1992, 368–375.Google Scholar
  2. 2.
    Finegold SM Clinical relevance of antimicrobial susceptibility testing. European Journal of Clinical Microbiology & Infectious Diseases 1992, 11: 1021–1024.Google Scholar
  3. 3.
    Neu HC The crisis in antibiotic resistance. Science 1992, 257: 1064–1073.PubMedGoogle Scholar
  4. 4.
    Martínez JL, Baquero F Epidemiology of antibiotic inactivating enzymes and DNA probes: the problem of quantity. Journal of Antimicrobial Chemotherapy 1990, 26: 301–305.PubMedGoogle Scholar
  5. 5.
    Martínez JL, Cercenado E, Rodríguez-Creixems M, Vicente-Pérez F, Delgado-Iribarren A, Baquero F Resistance to beta-lactam/clavulanate. Lancet 1987, ii: 1473.Google Scholar
  6. 6.
    Bush K Beta-lactamase inhibitors from laboratory to clinic. Clinical Microbiology Reviews 1988, 1: 109–123.PubMedGoogle Scholar
  7. 7.
    Masterton RG, Garner PJ, Harrison NA, Rainford DJ Timentin resistance. Lancet 1987, ii: 975–976.Google Scholar
  8. 8.
    Martínez JL, Vicente MF, Delgado-Iribarren A, Pérez-Díaz JC, Baquero F Small plasmids are involved in amoxicillin/clavulanate resistance inEscherichia coli. Antimicrobial Agents and Chemotherapy 1989, 23: 283–284.Google Scholar
  9. 9.
    Shannon K, Williams H, King A, Phillips I Hyper-production of TEM-1 beta-lactamase in clinical isolates ofEscherichia coli serotype O15. FEMS Microbiology Letters 1990, 55: 319–323.PubMedGoogle Scholar
  10. 10.
    Thomson CJ, Amyes SG TRC-1: emergence of a clavulanic acid-resistant TEM beta-lactamase in a clinical strain. FEMS Microbiology Letters 1992, 70: 113–117.PubMedGoogle Scholar
  11. 11.
    Delaire M, Labia R, Samama JP, Mason JM Site-directed mutagenesis at the active site ofEscherichia coli TEM-1 beta-lactamase. Suicide inhibitor-resistant mutants reveal the role of arginine 244 and methionine 69 in catalysis. Journal of Biological Chemistry 1992, 267: 20600–20606.PubMedGoogle Scholar
  12. 12.
    Blázquez J, Baquero M-R, Cantón R, Alós I, Baquero F Characterization of a new TEM-type beta-lactamase resistant of clavulanate, sulbactam, and tazobactam in a clinical isolate ofEscherichia coli. Antimicrobial Agents and Chemotherapy 1993, 37: 2059–2063.PubMedGoogle Scholar
  13. 13.
    Perlin MH, Lerner SA Amikacin resistance associated with a plasmid-borne aminoglycoside phosphotransferase inEscherichia coli. Antimicrobial Agents and Chemotherapy 1979, 16: 598–604.PubMedGoogle Scholar
  14. 14.
    Perlin MH, Lerner SA High-level amikacin resistance inEscherichia coli due to phosphorylation and impaired aminoglycoside uptake. Antimicrobial Agents and Chemotherapy 1986, 29: 216–224.PubMedGoogle Scholar
  15. 15.
    Martínez JL, Blázquez J, Vicente MF, Martínez-Ferrer M, Reguera J, Culebras E, Baquero F Influence of gene dosing on antibiotic resistance mediated by inactivating enzymes. Journal of Chemotherapy 1990, 4: 265–266.Google Scholar
  16. 16.
    Blázquez J, Martínez JL, Baquero F Bleomycin increases amikacin and streptomycin resistance inE. coli harboring transposon Tn5. Antimicrobial Agents and Chemotherapy 1993, 37: 1982–1985.PubMedGoogle Scholar
  17. 17.
    Sanders CC Chromosomal cephalosporinases responsible for multiple resistance to newer β-lactam antibiotics. Annual Review of Microbiology 1987, 41: 573–593.PubMedGoogle Scholar
  18. 18.
    Bennett PM, Chopta I Molecular basis of beta-lactamase induction in bacteria. Antimicrobial Agents and Chemotherapy 1993, 37: 153–158.PubMedGoogle Scholar
  19. 19.
    Phillips I, Shannon K Importance of beta-lactamase induction. European Journal of Clinical Microbiology & Infectious Diseases 1993, 12, Supplement 1: 19–26.Google Scholar
  20. 20.
    Reguera JA, Baquero F, Berenguer J, Martínez-Ferrer M, Martínez JL Beta-lactam-fosfomycin antagonism involving modification of penicillin-binding protein 3 inPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1990, 26: 301–305.Google Scholar
  21. 21.
    Kahan FM, Kahan JS, Cassidy PJ, Kropp H The mechanism of action of fosfomycin (phosphonomycin). Annals of the New York Academy of Sciences 1974, 235: 364–386.PubMedGoogle Scholar
  22. 22.
    Portier H, Armengaud M, Becq-Giraudon B, Bousser J, Desbordes JM, Duez JM, Kazmierczak A, Korinek AM, Laisne MJ, Pangon B, Peyramond D, Remy G, Thierry A, Vernet V, Veyssier P, Wolff M Traitement par l'association céfotaxime-fosfomycine des méningites de l'adult à staphylocoques ou entérobactéries. Presse Medicale 1987, 43: 2161–2166.Google Scholar
  23. 23.
    Hara O, Beppu T Induction of streptomycin-inactivating enzyme by A-factor inStreptomyces griseus. Journal of Antibiotics 1982, 35: 349–358.PubMedGoogle Scholar
  24. 24.
    Burns JL, Clark DK Salicylate-inducible antibiotic resistance inPseudomonas cepacia associated with absence of a pore-forming outer membrane protein. Antimicrobial Agents and Chemotherapy 1992, 36: 2280–2285.PubMedGoogle Scholar
  25. 25.
    Visca P, Ciervo A, Sanfilippo V, Orsi N Iron-regulated salycilate synthesis byPseudomonas spp. Journal of General Microbiology 1993, 139: 1995–2001.PubMedGoogle Scholar
  26. 26.
    Weinberg ED Iron withholding: a defense against infection and neoplasia. Physiological Reviews 1984, 64: 65–102.PubMedGoogle Scholar
  27. 27.
    Crichton R, Charloteaux-Wauters M Iron transport and storage. European Journal of Biochemistry 1987, 164: 485–506.PubMedGoogle Scholar
  28. 28.
    Bullen JJ, Rogers HJ, Griffith E Role of iron in bacterial infection. Current Topics in Microbiology and Immunology 1978, 80: 1–35.PubMedGoogle Scholar
  29. 29.
    Martínez JL, Delgado-Iribarren A, Baquero F Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiology Reviews 1990, 75: 45–56.Google Scholar
  30. 30.
    Wooldridge KG, Williams PH Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiology Reviews 1993, 12: 325–348.PubMedGoogle Scholar
  31. 31.
    Cederlund H, Mårdh P Antibacterial activities of non-antibiotic drugs. Journal of Antimicrobial Chemotherapy 1993, 32: 355–365.PubMedGoogle Scholar
  32. 32.
    Cohen SP, Yan W, Levy SB A multidrug resistance regulatory chromosomal locus is widespread among enteric bacteria. Journal of Infectious Diseases 1993, 168: 484–488.PubMedGoogle Scholar
  33. 33.
    Cohen SP, Hachler H, Levy SB Genetic and functional analysis of the multiple antibiotic resistance (mar) locus inEscherichia coli. Journal of Bacteriology 1993, 175: 1484–1492.PubMedGoogle Scholar
  34. 34.
    Cohen SP, Levy SB, Foulds J, Rosner JL: Salycilate induction of antibiotic resistance inEscherichia coli: Activation of themar operon and amar-independent pathway. Journal of Bacteriology 1993, 7856–7862.Google Scholar
  35. 35.
    Livermore DM, Corkill JE Effects of CO2 and pH on inhibition of TEM-1 and other beta-lactamases by penicillanic acid sulfones. Antimicrobial Agents and Chemotherapy 1992, 36: 1870–1876.PubMedGoogle Scholar
  36. 36.
    Laub R, Schneider YJ, Trobet A Antibiotic susceptibility ofSalmonella spp. at different pH values. Journal of General Microbiology 1989, 135: 1407–1416.PubMedGoogle Scholar
  37. 37.
    Tulkens PM Intracellular distribution and activity of antibiotics. European Journal of Clinical Microbiology & Infectious Diseases 1991, 10: 100–106.Google Scholar
  38. 38.
    Greenwood D Phenotypic resistance to antimicrobial agents. Journal of Antimicrobial Chemotherapy 1985, 15: 653–658.PubMedGoogle Scholar
  39. 39.
    Marshall KC Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. ASM News 1992, 58: 202–207.Google Scholar
  40. 40.
    Martin DW, Schurr MJ, Mudd MH, Govan JRW, Holloway BW, Deretic V Mechanism of conversion to mucoidy inPseudomonas aeruginosa infecting cystic fibrosis patients. Proceedings of the National Academy of Sciences of the USA 1990, 18: 8377–8381.Google Scholar
  41. 41.
    Allison DG, Matthews MJ Effect of polysaccharise interactions on antibiotic susceptibility ofPseudomonas aeruginosa. Journal of Applied Bacteriology 1992, 73: 484–488.PubMedGoogle Scholar
  42. 42.
    Khoury AE, Lam K, Ellis B, Costerton JW Prevention and control of bacterial infections associated with medical devices. ASAIO Journal 1992, 38: M174-M178.PubMedGoogle Scholar
  43. 43.
    Eng RHK, Smith SM, Cherubin C Inoculum effect of new β-lactam antibiotics onPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1984, 26: 42–47.PubMedGoogle Scholar
  44. 44.
    Stratton CW, Tausk F Synergistic resistance mechanisms inPseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 1987, 19: 413–416.PubMedGoogle Scholar
  45. 45.
    Georgiou G, Shuler ML, Wilson DB Release of periplasmic enzymes and other physiological effects of β-lactamase overproduction inEscherichia coli. Biotechnology and Bioengineering 1988, 32: 741–748.Google Scholar
  46. 46.
    Barry AL, Thornsberry C Susceptibility testing: diffusion test procedures. In: Lennette EH, Balows A, Hausler WJ, Truant JP (ed): Manual of clinical microbiology. American Society for Microbiology. Washington, DC, 1980, p. 463–474.Google Scholar
  47. 47.
    Baquero F, Vicente MF, Pérez-Díaz JC β-lactam coselection of sensitive and TEM-1 β-lactamase-producing subpopulations in heterogeneousEscherichia colonies. Journal of Antimicrobial Chemotherapy 1985, 15: 151–157.PubMedGoogle Scholar
  48. 48.
    Brook I The concept of indirect pathogenicity by beta-lactamase production, especially in ear, nose and throat infection. Journal of Antimicrobial Chemotherapy 1989, 24, Supplement B: 63–72.Google Scholar
  49. 49.
    Brook I The role of beta-lactamase-producing bacteria in obstetrical and gynecological infections. Gynecological and Obstetrical Investigation 1991, 32: 44–50.Google Scholar
  50. 50.
    Pagani L, Debiaggi M, Tenni R, Cereda PM, Landini P, Romero E Beta-lactam resistantPseudomonas aeruginosa strains emerging during therapy: synergistic resistance mechanisms. Microbiologica 1988, 11: 47–53.PubMedGoogle Scholar
  51. 51.
    Yoshimura F, Nikaido H Diffusion of β-lactam antibiotics through the porin channels ofEscherichia coli K-12. Antimicrobial Agents and Chemotherapy 1985, 27: 84–92.PubMedGoogle Scholar
  52. 52.
    Hechler U, van-den-Weghe M, Martin HH, Frere JM Overproduced beta-lactamase and the outer-membrane barrier as resistance factors inSerratia marcenscens highly resistant to beta-lactamase-stable beta-lactam antibiotics. Journal of General Microbiology 1989, 135: 1275–1290.PubMedGoogle Scholar
  53. 53.
    Satake S, Yoneyama H, Nakae T Role of OmpD2 and chromosomal beta-lactamase in carbapenem resistance in clinical isolates ofPseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 1991, 28: 199–207.PubMedGoogle Scholar
  54. 54.
    Livermore DM Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistantPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1992, 36: 2046–2048.PubMedGoogle Scholar
  55. 55.
    Raimondi A, Traverso A, Nikaido H Imipenem and meropenem-resistant mutants ofEnterobacter cloacae andProteus rettgeri lack porins. Antimicrobial Agents and Chemotherapy 1991, 35: 1174–1180.PubMedGoogle Scholar
  56. 56.
    Reguera JA, Baquero F, Pérez-Díaz JC, Martínez JL Factors determining resistance to β-lactam combined with β-lactamase inhibitors inEscherichia coli. Journal of Antimicrobial Chemotherapy 1991, 27: 569–575.PubMedGoogle Scholar
  57. 57.
    Reguera JA, Baquero F, Pérez-Díaz JC, Martínez JL Synergistic effect of gene dosage and bacterial inoculum in TEM-1 mediated antibiotic resistance. European Journal of Clinical Microbiology & Infectious Diseases 1988, 7: 778–779.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1994

Authors and Affiliations

  • J. L. Martínez
    • 1
  • J. Blázquez
    • 2
  • F. Baquero
    • 2
  1. 1.Centro Nacional de BiotecnologíaUniversidad Autónoma de Madrid, CantoblancoMadridSpain
  2. 2.Servicio MicrobiologíaHospital Ramón y CajalMadridSpain

Personalised recommendations