Skip to main content
Log in

Immunobiology ofMycobacterium avium infection

  • Current Topic: Review
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

Infection caused by organisms of theMycobacterium avium complex is diagnosed in 50 % to 60 % of AIDS patients with the advanced stage of disease.Mycobacterium avium is an environmental bacterium that gains access to the host through both the gastrointestinal tract and the respiratory tract. After crossing the mucosal barrierMycobacterium avium disseminates, infecting chiefly mononuclear phagocytes of the reticuloendothelial system. A number of cells of the immune system such as CD4+ T cells, natural killer cells and macrophages have been shown to be involved in the host response toMycobacterium avium. The interaction betweenMycobacterium avium and macrophages results in the production of immune-suppressive cytokines that inhibit the effector function of TH1 subtype CD4+ T cells, natural killer cells and macrophages, possibly allowing survival ofMycobacterium avium. Some cytokines such as tumor necrosis factor alpha and granulocyte-macrophage colony-stimulating factor have been shown to induce mycobacteriostatic activity and mycobactericidal activity in infected macrophages. Over the next few years, much new information will certainly be gleaned about host-pathogen interactions, which will lead to a better understanding of the disease and possibly to the design of new forms of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prince DS, Peterson DD, Steiner RM, Gottlieb JE, Scott R, Israel HL, Figueroa WG, Fish JE Infection withMycobacterium avium complex in patients without predisposing conditions. New England Journal of Medicine 1989, 130: 863–868.

    Google Scholar 

  2. Bermudez LE, Wu M, Enkel H, Young LS Naturally occurring antibodies againstMycobacterium avium complex. Annals of Clinical and Laboratory Science 1989, 19: 435–443.

    PubMed  Google Scholar 

  3. Nightingale SD, Byrd LT, Southern PM, Jockusch JD, Cal SX, Wynne B Incidence ofMycobacterium avium-intracellulare complex bacteremia in human immunodeficiency virus-positive patients. Journal of Infectious Diseases 1992, 165: 1082–1085.

    PubMed  Google Scholar 

  4. Horsburgh CR Mycobacterium avium complex in the acquired immunodeficiency syndrome. New England Journal of Medicine 1991, 324: 1332–1338.

    PubMed  Google Scholar 

  5. Inderlied C, Kemper CA, Bermudez LE TheMycobacterium avium complex. Clinical Microbiology Reviews 1993, 6: 266–310.

    PubMed  Google Scholar 

  6. Engbaek HC, Vergmann B, Bentzon MW Lung disease caused byMycobacterium avium/Mycobacterium intracellulare. An analysis of Danish patients during the period 1962–1976. European Journal of Respiratory Diseases 1981, 62: 72–83.

    PubMed  Google Scholar 

  7. Rosenzweig DY, Schlueter DP Spectrum of clinical disease in pulmonary infection withMycobacterium-avium intracellulare. Reviews of Infectious Diseases 1981, 3: 1046–1051.

    PubMed  Google Scholar 

  8. Hawkins CC, Gold JW, Whimbey E, Kiehn TE, Brannon P, Cammarata R, Brown AE, Armstrong D Mycobacterium avium complex infections in patients with the acquired immunodeficiency syndrome. Annals of Internal Medicine 1986, 111: 184–188.

    Google Scholar 

  9. Gray JR, Rabeneck L Atypical mycobacterial infection of the gastrointestinal tract in AIDS patients. American Journal of Gastroenterology 1989, 84: 1521–1525.

    PubMed  Google Scholar 

  10. Bermudez LE, Petrofsky M, Kolonoski P, Young LS An animal model ofMycobacterium avium complex disseminated infection after colonization of the intestinal tract. Journal of Infectious Diseases 1992, 165: 75–79.

    PubMed  Google Scholar 

  11. Orme IM, Furney SK, Roberts AD Dissemination of entericMycobacterium avium infections in mice rendered immunodeficient by thymectomy and CD4 depletion or by prior infection with murine AIDS retrovirus. Infection and Immunity 1992, 60: 4747–4753.

    PubMed  Google Scholar 

  12. Gilinsky NH, Marks IN, Kottler RE, Price SK Abdominal tuberculosis. A ten-year review. South African Medical Journal 1983, 64: 849–857.

    PubMed  Google Scholar 

  13. Bermudez LE, Shelton K Mycobacterium avium complex binds to and invades HT-29 and Hep-2 cell lines. Journal of Cellular Biochemistry 1994, 18A: 44.

    Google Scholar 

  14. Finlay BB, Falkow S Comparison of the invasion strategies used bySalmonella choleraesuis, Shigella flexneri, andYersinia entercolitica to enter cultivated animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochemie 1988, 70: 1089–1099.

    Article  Google Scholar 

  15. Abou-Zeid C, Ratliff TL, Wiker HG, Harboe M, Bennedsen J, Rook GAW Characterization of fibronectin-binding antigens released byMycobacterium tuberculosis andMycobacterium bovis. Infection and Immunity 1988, 56: 3046–3051.

    PubMed  Google Scholar 

  16. Ratliff TL, McCarthy R, Telle WB, Brown EJ Purification of a mycobacterial adhesin for fibronectin. Infection and Immunity 1993, 61: 1889–1894.

    PubMed  Google Scholar 

  17. Thole JER, Schoningh R, Janson AAM, Garbe T, Cornelisse YE, Clarck-Curtiss JE, Kolk AH, Ottenhoff THM, DeVries PRP, Abou-Zeid C Molecular and immunological analysis of a fibronectin-binding protein antigen secreted byMycobacterium leprae. Molecular Microbiology 1992, 6: 153–163.

    PubMed  Google Scholar 

  18. Ratliff TL, Palmer JO, McGarr JA Intravesical bacillus Calmette-Guerin therapy for murine bladder tumors. Initiation of the response by fibronectin-mediated attachment of bacillus Calmette-Guerin. Cancer Research 1987, 47: 1762–1766.

    PubMed  Google Scholar 

  19. Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley LW Cloning of anM. tuberculosis DNA fragment associated with entry and survival inside cells. Science 1993, 261: 1454–1457.

    PubMed  Google Scholar 

  20. Schlesinger LS, Horwitz MA Phagocytosis of leprosy bacilli is mediated by complement receptors CRI and CR3 on human monocytes and complement component C3 in serum. Journal of Clinical Investigation 1990, 85: 1304.

    PubMed  Google Scholar 

  21. Schlesinger LS, Bellinger-Kawahara C, Payne NR, Horwitz MA Phagocytosis ofM. tuberculosis is mediated by human monocyte complement receptors and complement component C3. Journal of Immunology 1990, 144: 2771–2776.

    Google Scholar 

  22. Schlesinger LS Macrophage phagocytosis of virulent but not attenuated strains ofM. tuberculosis is mediated by mannoside receptors in addition to complement receptors. Journal of Immunology 1993, 150: 2920–2930.

    Google Scholar 

  23. Bermudez LE, Young LS, Enkel H Interaction ofMycobacterium avium complex with human macrophages: Roles of membrane receptors and serum proteins. Infection and Immunity 1991, 59: 1697–1702.

    PubMed  Google Scholar 

  24. Rao SP, Ogata K, Catanzaro A Mycobacterium avium-M. intracellulare binds to the integrin receptor αγβ3 on human monocytes and monocyte-derived macrophages. Infection and Immunity 1993, 61: 663–670.

    PubMed  Google Scholar 

  25. Wright SD, Silverstein S Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. Journal of Experimental Medicine 1983, 158: 2016–2026.

    Article  PubMed  Google Scholar 

  26. Mayer BK, Falkinham JOI Superoxide dismutase activity ofMycobacterium avium, Mycobacterium intracellulare, M. scrofulaceum. Infection and Immunity 1986, 56: 631–635

    Google Scholar 

  27. Young DB, Kaufman SHE, Hermans PWM, Thole JER Mycobacterial protein antigens — a compilation. Molecular Microbiology 1992, 6: 133–145.

    PubMed  Google Scholar 

  28. Bermudez LE, Young LS, Martinelli J, Petrofsky M Exposure to ethanol upregulates the expression ofM. avium proteins associated with bacteria virulence. Journal of Infectious Diseases 1993, 168: 961.

    PubMed  Google Scholar 

  29. Sturgill-Koszycki S, Schlesinger PH, Chakreborty P, Haddix PL, Collins HL, Fox AK, Allen RD, Gluck SL, Heuser J, Russell DG Lack of acidification in mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 1994, 263: 678–681.

    PubMed  Google Scholar 

  30. Crowle A, Dahl R, Ross E, May MH Evidence that vesicles containing living, virulentMycobacterium tuberculosis orMycobacterium avium in cultured human macrophages are not acidic. Infection and Immunity 1991, 59: 1823–1827.

    PubMed  Google Scholar 

  31. Frechel C, Rastogi N Mycobacterium leprae surface components intervene in the early phagosome-lysosome fusion inhibition event. Infection and Immunity 1987, 55: 2916–2921.

    PubMed  Google Scholar 

  32. Chan J, Fan X, Hunter SW, Brennan PJ, Bloom BR Lipoarabinomannan, a possible virulence factor involved in persistence ofM. tuberculosis within macrophages. Infection and Immunity 1991, 59: 1755–1760.

    PubMed  Google Scholar 

  33. Appelberg R, Sarmento AM The role of macrophage activation and of Bcg-encoded macrophage function(s) in the control ofMycobacterium avium infection in mice. Clinical and Experimental Immunology 1990, 80: 324–331.

    PubMed  Google Scholar 

  34. Denis M, Forget A, Pelletier M, Gervais F, Skamene E Killing ofMycobacterium smegmatis by macrophages from genetically susceptible and resistant mice. Journal of Leukocyte Biology 1990, 47: 25–30.

    PubMed  Google Scholar 

  35. deChastellier C, Frehel C, Offredo C, Skamene C Implication of phagosome-lysosome fusion in restriction ofMycobacterium avium growth in bone marrow macrophages from genetically resistant mice. Infection and Immunity 1993, 61: 3775–3784.

    PubMed  Google Scholar 

  36. Bermudez LE, Young LS Phagocytosis and intracellular killing ofMycobacterium avium complex by human and murine macrophages. Brazilian Journal of Medical and Biological Research 1987, 20: 191–200.

    PubMed  Google Scholar 

  37. Kaufmann SHE Role of T-cell subsets in bacterial infections. Current Opinion in Immunology 1991, 3: 465–470.

    Article  PubMed  Google Scholar 

  38. Collins FM, Stokes RW M. avium complex infection in normal and immunosuppressed mice. Tubercle 1987, 68: 127–136.

    Article  PubMed  Google Scholar 

  39. Hubbard RD, Flory CM, Collins FM T-cell immune response inMycobacterium avium-infected mice. Infection and Immunity 1992, 60: 150–153.

    PubMed  Google Scholar 

  40. Motyl MR, Saltzman B, Levi MH, McKitrick JC, Friedland GH, Klein RS The recovery ofMycobacterium avium complex andMycobacterium tuberculosis from blood specimens of AIDS patients using the non-radiometric Bactec NR 660 medium. American Journal of Clinical Pathology 1990, 94: 84–86.

    PubMed  Google Scholar 

  41. O'Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen derived fromM. tuberculosis. Cell 1989, 57: 667–674.

    Article  PubMed  Google Scholar 

  42. Barnes PF, Grisso CL, Abrams JS, Band H, Rea TA, Modlin RL γδ-T lymphocytes in human tuberculosis. Journal of Infectious Diseases 1992, 165: 506–512.

    PubMed  Google Scholar 

  43. Follows GA, Munk ME, Gatrill AJ, Conradt P, Kaufmann SHE Gamma-Interferon and interleukin-2 but not interleukin-4 are detectable in γδ T cell cultures after activation with bacteria. Infection and Immunity 1992, 60: 1229–1231.

    PubMed  Google Scholar 

  44. Bermudez LE, Young LS Natural killer cell dependent mycobacteriostatic and mycobactericidal activity in human macrophages. Journal of Immunology 1991, 146: 265–269.

    Google Scholar 

  45. Blanchard DK, Micheline-Norris MB, Friedman H, Djeu JY Lysis of mycobacteria-infected monocytes by IL-2 activated killer cells. Cellular Immunology 1989, 119: 402–411.

    Article  PubMed  Google Scholar 

  46. Katz P, Yeager H, Whalen G, Evans M, Swartz RP, Roecklein J Natural killer cell-mediated lysis ofMycobacterium avium complex infected macrophages. Journal of Clinical Immunology 1990, 10: 71–77.

    Article  PubMed  Google Scholar 

  47. Blanchard DK, McMillen S, Hoffman SL, Djeu JY Mycobacterial induction of activated killer cells: possible role of tyrosine kinase activity in interleukin-2 receptor alpha expression. Infection and Immunity 1992, 60: 2843–2849.

    PubMed  Google Scholar 

  48. Blanchard DK, Michelini-Norris MB, Pearson CA, Freitag CS, Djeu JY Mycobacterium avium-intracellulare induces interleukin-6 from human monocytes and large granular lymphocytes. Blood 1991, 77: 2218–2224.

    PubMed  Google Scholar 

  49. Bermudez LE, Kolonoski P, Young LS Natural killer cell activity and macrophage dependent inhibition of growth or killing ofMycobacterium avium complex in a mouse model. Journal of Leukocyte Biology 1990, 47: 135–142.

    PubMed  Google Scholar 

  50. Bermudez LE, Young LS Recombinant granulocyte-macrophage colony stimulating factor activates human macrophages to inhibit growth or killMycobacterium avium complex. Journal of Leukocyte Biology 1990, 48: 67–73.

    PubMed  Google Scholar 

  51. Bermudez LE, Young LS Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing ofMycobacterium avium complex. Journal of Immunology 1988, 9: 3006–3013.

    Google Scholar 

  52. Denis M, Gregg EO Recombinant tumor necrosis factor-alpha decreases whereas recombinant interleukin-6 increases growth of a virulent strains ofMycobacterium avium in human macrophages. Immunology 1990, 71: 139–141.

    PubMed  Google Scholar 

  53. Orme IM, Furney SK, Skinner PS, Roberts AD, Brennan PJ, Russell DG, Shiartsuchi H, Ellner JJ, Weiser WY Inhibition of growth ofMycobacterium avium in murine and human mononuclear phagocytes by migration inhibitory factor. Infection and Immunity 1993, 61: 338–342.

    PubMed  Google Scholar 

  54. Bermudez LE, Young LS Killing ofMycobacterium avium: Insights provided by the use of recombinant cytokines. Research in Microbiology 1990, 141: 241–245.

    Article  PubMed  Google Scholar 

  55. Gan H, Newman G, McCarthy PL, Remold HG TNFα response of human monocyte-derived macrophages toM. avium, serovar 4, is of brief duration and protein kinase dependent. Journal of Immunology 1993, 150: 2892–2900.

    Google Scholar 

  56. Bermudez LE, Stevens P, Kolonoski P, Wu M, Young LS Treatment of disseminatedMycobacterium avium complex infection in mice with recombinant interleukin-2 and tumor necrosis factor. Journal of Immunology 1989, 143: 2996–3002.

    Google Scholar 

  57. Bermudez LE, Martinelli J, Petrofsky M, Kolonoski P, Young LS Recombinant granulocyte-macrophage colony stimulating factor enhances the effects of antibiotics againstM. avium complex. Journal of Infectious Diseases 1994, 16: 575–580.

    Google Scholar 

  58. Bermudez LE Production of transforming growth factor β byMycobacterium avium infected macrophages is associated with unresponsiveness to interferon-gamma. Journal of Immunology 1993, 150: 1838–1843.

    Google Scholar 

  59. Bermudez LE, Wu M, Petrofsky M, Young LS Interleukin-6 antagonizes tumor necrosis factor-mediated mycobacteriostatic and mycobactericidal activities in macrophages. Infection and Immunity 1992, 60: 4245–4252.

    PubMed  Google Scholar 

  60. Bermudez LE, Champsi J Infection withM. avium induces production of IL-10 and administration of IL-10 antibody is associated with enhanced resistance to infection in mice. Infection and Immunity 1993, 61: 3093–3096.

    PubMed  Google Scholar 

  61. Johnson JL, Shiratsuchi H, Toba H, Ellner JJ Preservation of monocyte effector functions againstMycobacterium avium-Mycobacterium intracellulare in patients with AIDS. Infection and Immunity 1991, 59: 3639–3645.

    PubMed  Google Scholar 

  62. Kallenius G, Koivula T, Rydgard KJ, Hoffner SE, Valentin A, Asjoe B, Ljungh C, Sharma U, Svenson SB Human immunodeficiency virus type I enhances intracellular growth ofMycobacterium avium in human macrophages. Infection and Immunity 1992, 60: 2453–2458.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermudez, L.E. Immunobiology ofMycobacterium avium infection. Eur. J. Clin. Microbiol. Infect. Dis. 13, 1000–1006 (1994). https://doi.org/10.1007/BF02111501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02111501

Keywords

Navigation