Skip to main content
Log in

The heat of immersion of zinc oxide in water

  • Originalarbeiten
  • Kolloide
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The immersional heats of zinc oxide in water have been measured in connection with the variation of the outgassing temperature of the sample. The heats show a maximum on the sample treated at 400° to 500°C. This phenomenon can be explained in terms of chemisorption which occurs on the dehydrated site on the surface, followed by physical adsorption on the surface hydroxyl groups due to hydrogen bonding.

The heats of adsorption and chemisorption of water molecules on the surface of zinc oxide were calculated separately from the data of the immersional heat and the water content.

Zusammenfassung

Es wurde die Benetzungswärme von Zinkoxid in Wasser in Abhängigkeit von der Vorbehandlungstemperatur bestimmt. Bei den Proben, die zwischen 400° und 500°C entgast wurden, trat ein Maximum in der Benetzungswärme auf, das durch eine besonders starke Chemisorption erklärt wird. An den bei anderen Temperaturen entgasten Präparaten findet nur eine physikalische Adsorption statt. Aus den gemesenen Benetzungswärmen und dem H2O-Gehalt der Oberfläche wurden die Adsorptionswärmen von Wasser an Zinkoxid bei physikalischer und bei chemischer Adsorption berechnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arghiroponlos, B. M. andS. J. Teichner, J. Catalysis3, 477 (1964);Luetic, P. F. andI. Sviben, ibid.4, 109 (1965).

    Article  Google Scholar 

  2. Tanabe, K. andT. Yamaguchi, J. Res. Inst. Catalysis, Hokkaido Univ.11, 179 (1964).

    Google Scholar 

  3. Watanabe, H., M. Wada andT. Takahashi, Japan J. Appl. Phys.3, 617 (1964);Preier, H., Z. Naturforsch.19a, 1431 (1964).

    Google Scholar 

  4. Makrides, A. C. andN. Hackerman, J. Phys. Chem.63, 594 (1959);Egorov, M. M., V. F. Kiselev, K. G. Krasilnikov andV. V. Murina, J. Phys. Chem. (U.S.S.R.)33, 65 (1959);Young, G. J. andT. P. Bursh, J. Colloid Sci.15, 361 (1960);Whalen, J. W., “Solid Surfaces and the Gas-Solid Interface”, Ed. byCopeland, L. E. et al., Amer. Chem. Soc. (Washington, D. C. 1961), p. 281.

    Article  Google Scholar 

  5. Peri, J. B. andR. B. Hannan, J. Phys. Chem.64, 1526 (1960);McDonald, R. S., J. Amer. Chem. Soc.79, 850 (1957);Basila, M. R., J. Chem. Phys.35, 1151 (1961).

    Google Scholar 

  6. Zimmerman, J. R. andJ. A. Lasater, J. Phys. Chem.62, 1157 (1958);O'Reilly, D. E., Advances in Catalysis12, 31 (1960).

    Article  Google Scholar 

  7. Morimoto, T. andM. Sakamoto, Bull. Chem. Soc. Japan37, 1369 (1963).

    Google Scholar 

  8. Parks, G. A., Chem. Rev.65, 177 (1965).

    Article  Google Scholar 

  9. Morimoto, T. andM. Sakamoto, Bull. Chem. Soc. Japan37, 719 (1964).

    Google Scholar 

  10. Morimoto, T., M. Yamaguchi, T. Matsumoto andK. Juna, Rep. Res. Lab. Surface Science, Okayama Univ.2, 65 (1962).

    Google Scholar 

  11. Morimoto, T., K. Shiomi andH. Tanaka, Bull. Chem. Soc. Japan37, 392 (1964).

    Google Scholar 

  12. To be published.

  13. Young, G. J. andT. P. Bursh, J. Colloid Sci.15, 361 (1960).

    Article  Google Scholar 

  14. Dana, S. andW. E. Ford, “A Textbook of Mineralogy” (New York 1960), p. 480.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 figures and 1 table

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morimoto, T., Nagao, M. & Hirata, M. The heat of immersion of zinc oxide in water. Kolloid-Z.u.Z.Polymere 225, 29–33 (1968). https://doi.org/10.1007/BF02111395

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02111395

Navigation