Journal of Bioenergetics and Biomembranes

, Volume 28, Issue 2, pp 191–198 | Cite as

The high-conductance channels of yeast mitochondrial outer membranes: A planar bilayer study

  • György Bàthori
  • IldikÒ SzabÒ
  • Daniel Wolff
  • Mario Zoratti
Research Articles


The high-conductance channels present in the outer membranes of wild-type and porin-less yeast mitochondria have been characterized electrophysiologically after incorporation in planar bilayer membranes. The most prominent activity was ascribed to a voltage-dependent, substaterich, cationic channel which generally inactivated at potentials positive in thecis compartment, in agreement with the observations from patch-clamp experiments on porin-less mitoplasts. This channel has been identified as the so-called “peptide-sensitive channel” (PSC). We also observed similar channels displaying either no inactivation, or inactivation at both positive and negative potentials. These latter properties match those already described for mammalian and yeast PSC, respectively. These different behaviors are tentatively explained as arising from the presence, or lack of, peptides bound to the PSC. Very high conductances, apparently due to cooperative gating, were frequently displayed. In wild-type membranes, activity ascribable to the porin was also observed.

Key words

Electrophysiology peptide-sensitive channel mitochondrial megachannel porin planar bilayer yeast mitochondria 

Abbreviations used


peptide-sensitive channel


mitochondrial megachannel


voltage-dependent anion channel (mitochondrial porin)


4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid


pre-cytochrome oxidase subunit IV


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benz, R. (1994).Biochim. Biophys. Acta 1197, 167–196.PubMedGoogle Scholar
  2. Bernardi, P., Broekemeier, K. M., and Pfeiffer, D. R. (1994).J. Bioenerg. Biomembr. 26, 509–517.CrossRefPubMedGoogle Scholar
  3. Chich, J. -F., Goldschmidt, D., Thieffry, M., and Henry, J. -P. (1991).Eur. J. Biochem. 196, 29–35.CrossRefPubMedGoogle Scholar
  4. Colombini, M. (1994).Curr. Top. Membr. 42, 73–101.Google Scholar
  5. Fèvre, F., Chich, J. -F., Lauquin, G. J. M., Henry, J. -P., and Thieffry, M. (1990).FEBS Lett. 262, 201–204.CrossRefPubMedGoogle Scholar
  6. Fèvre, F., Henry, J. -P., and Thieffry, M. (1993).J. Bioenerg. Biomembr. 25, 55–60.CrossRefPubMedGoogle Scholar
  7. Fèvre, F., Henry, J. -P., and Thieffry, M. (1994).Biophys. J. 66, 1887–1894.PubMedGoogle Scholar
  8. Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. 258, C755-C786.PubMedGoogle Scholar
  9. Gunter, T. E., Gunter, K. K., Sheu, S. -S., and Gavin, C. E. (1994).Am. J. Physiol. 267, C313-C339.PubMedGoogle Scholar
  10. Halestrap, A. P. (1994). InMitochondria: DNA, Proteins and Disease (Darley-Usmar, V., and Schapira. A, H. V., eds.), Portland Press, pp. 113–142.Google Scholar
  11. Henry, J. -P., Chich, J. -F., Godschmidt, D., and Thieffry, M. (1989).J. Membr. Biol. 112, 139–147.CrossRefPubMedGoogle Scholar
  12. Hines, V., Brandt, A., Griffiths, G., Horstmann, H., Brütsch, H., and Schatz, G. (1990).EMBO J. 9, 3191–3200.PubMedGoogle Scholar
  13. Hwang, S., Jascur, T., Westweber, D., Pon, L., and Schatz, G. (1989).J. Cell Biol. 109, 487–493.CrossRefPubMedGoogle Scholar
  14. Kinnally, K. W., Zorov, D. B., Antonenko, Yu. N., Snyder, A. H., McEnery, M. W., and Tedeschi, H. (1993).Proc. Natl. Acad. Sci. USA 90, 1374–1378.PubMedGoogle Scholar
  15. SzabÒ, I., and Zoratti, M. (1993).FEBS Lett. 330, 201–205.CrossRefPubMedGoogle Scholar
  16. SzabÒ, I., Bernardi, P., and Zoratti, M. (1992).J. Biol. Chem. 267, 2940–2946.PubMedGoogle Scholar
  17. SzabÒ, I., De Pinto, V., and Zoratti, M. (1993).FEBS Lett. 330, 206–210.CrossRefPubMedGoogle Scholar
  18. SzabÒ, I., Bàthori, G., Wolff, D., Starc, T., Cola, C., and Zoratti, M. (1995).Biochim. Biophys. Acta 1235, 115–125.PubMedGoogle Scholar
  19. Thieffry, M., Chich, J. -F., Goldschmidt, D., and Henry, J. -P. (1988).EMBO J. 7, 1449–1454.PubMedGoogle Scholar
  20. Thieffry, M., Neyton, J., Pelleschi, M., Fèvre, F., and Henry, J. -P., (1992a).Biophys. J. 63, 333–339.PubMedGoogle Scholar
  21. Thieffry, M., Fèvre, F., Pelleschi, M., and Henry, J. -P. (1992b). InMolecular Biology of Mitochondrial Transport Systems (Forte, M., and Colombini, M., eds.), NATO ASI Series, Vol. H 83, Springer Verlag, Berlin, Heidelberg, pp. 209–219.Google Scholar
  22. Vallette, F. M., Juin, P., Pelleschi, M. and Henry, J. -P. (1994).J. Biol. Chem. 269, 13367–13374.PubMedGoogle Scholar
  23. Zoratti, M., and SzabÒ, I. (1994).J. Bioenerg. Biomembr 26, 543–553.CrossRefPubMedGoogle Scholar
  24. Zoratti, M., and SzabÒ, I. (1995).Biochim. Biomembr. Acta.1241, 139–176.CrossRefGoogle Scholar
  25. Zoratti, M., SzabÒ, I., and De Pinto, V. (1992). InMolecular Biology of Mitochondrial Transport Systems (Forte, M., and Colombini, M., eds.), NATO ASI Series, Vol. H 83, Springer Verlag, Berlin, Heidelberg, pp. 153–168.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • György Bàthori
    • 1
  • IldikÒ SzabÒ
    • 1
  • Daniel Wolff
    • 1
  • Mario Zoratti
    • 1
  1. 1.Dip. Scienze Biomediche SperimentaliCentro CNR per le BiomembranePadovaItaly

Personalised recommendations