Journal of Bioenergetics and Biomembranes

, Volume 28, Issue 2, pp 171–180 | Cite as

Proteins of cytosol and amniotic fluid increase the voltage dependence of human type-1 porin

  • Martin Heiden
  • Katja Kroll
  • Friedrich P. Thinnes
  • Norbert Hilschmann
Research Articles


Heat-stable proteins from human and porcine cytosol and human amniotic fluid were found to increase the voltage dependence of human type-1 porin reconstituted in planar phospholipid bilayers. Purification processes revealed that these regulatory molecules were characterized by anionic charge and apparent molecular weights of between 23 and 64 kDa. The human cytosol proteins exerted inhibitory activity only when added to the compartment with applied negative potential. The observed increase in voltage dependence of porin was due to the presence of specific proteins in cytosol and amniotic fluid, since human cerebral spinal fluid in comparable amounts had no significant effect on the channel properties. Furthermore, other anionic proteins and polypeptides investigated demonstrated no inhibitory activity, indicating that anionic charge alone could not mimic the molecular properties of the regulatory proteins. With respect to the well-documented expression of porin in the plasma membrane of various cells and species, the presented data give first clues for a biochemical regulation of the channel in this compartment.

Key words

Porin VDAC anion channel chloride channel voltage dependence channel regulation plasma membrane regulatory protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babel, D., Walter, G., Götz, H., Thinnes, F. P., Jürgens, L., König, U., and Hilschmann, N. (1991).Biol. Chem. Hoppe-Seyler 372, 1027–1034.PubMedGoogle Scholar
  2. Bajnath, R. D., Groot, J. A., de Jonge, H. R., Kansen, M., and Bijman, J. (1993).Experentia 49, 313–316.CrossRefGoogle Scholar
  3. Barnikol-Watanabe, S., Groβ, N. A., Götz, H., Henkel, T., Karabinos, A., Kratzin, H., Barnikol, H. U., and Hilschmann, N. (1994).Biol. Chem. Hoppe-Seyler 375, 497–512.PubMedGoogle Scholar
  4. Benz, R. (1994).Biochim. Biophys. Acta 1197, 167–196.PubMedGoogle Scholar
  5. Benz, R., Janko, K., Boos, W., and LÄuger, P. (1978).Biochim. Biophys. Acta 511, 305–319.PubMedGoogle Scholar
  6. Benz, R., Wojtczak, L., Bosch, W., and Brdiczka, D. (1988).FEBS Lett. 231, 75–80.CrossRefPubMedGoogle Scholar
  7. Benz, R., Kottke, M., and Brdiczka, D. (1990).Biochim. Biophys. Acta 1022, 311–318.PubMedGoogle Scholar
  8. Benz, R., Maier, E., Thinnes, F. P., Götz, H., and Hilschmann, N. (1992).Biol. Chem. Hoppe-Seyler 373, 295–303.PubMedGoogle Scholar
  9. Bowen, K. A., Tam, K., and Colombini, M. (1985).J. Membr. Biol. 86, 51–59.CrossRefPubMedGoogle Scholar
  10. Cole, T., Awni, L. A., Nyakatura, E., Götz, H., Walter, G., Thinnes, F. P., and Hilschmann, N. (1992).Biol. Chem. Hoppe-Seyler 373, 891–896.PubMedGoogle Scholar
  11. Colombini, M., Yeung, C. L., Tung, J., and Koenig, T. (1987).Biochim. Biophys. Acta 905, 279–286.PubMedGoogle Scholar
  12. Dermietzel, R., Hwang, T.-K., Buettner, R., Hofer, A., Dotzler, E., Kremer, M., Deutzmann, R., Thinnes, F. P., Fishman, G. I., Spray, D. C., and Siemen, D. (1994).Proc. Natl. Acad. Sci. USA 91, 499–503.PubMedGoogle Scholar
  13. Fiek, C., Benz, R., Roos, N., and Brdiczka, D. (1982).Biochim. Biophys. Acta 688, 429–440.PubMedGoogle Scholar
  14. Hardy, S. P., and Valverde, M. A. (1994).FASEB J. 8, 760–765.PubMedGoogle Scholar
  15. Heiden, M., Thinnes, F. P., Krick, W., and Hilschmann, N. (1993).Biol. Chem. Hoppe-Seyler 374, 149.Google Scholar
  16. Holden, M. J., and Colombini, M. (1988).FEBS Lett. 241, 105–109.CrossRefPubMedGoogle Scholar
  17. Holden, M. J., and Colombini, M. (1993).Biochim. Biophys. Acta 1144, 396–402.PubMedGoogle Scholar
  18. Huizing, M., Ruitenbeek, W., Thinnes, F. P., and De Pinto, V. (1994).Lancet 344, 762.CrossRefGoogle Scholar
  19. Hurnak, O., and Zachar, J. (1993).Gen. Physiol. Biophys. 12, 171–182.PubMedGoogle Scholar
  20. Janisch, U., Skofitsch, G., Thinnes, F. P., Graier, W. F., and Groschner, K. (1993).Naunyn-Schmiedeberg's Arch. Pharmacol. 347, R73.Google Scholar
  21. Jürgens, L., Ilsemann, P., Kratzin, H. D., Hesse, D., Eckart, K., Thinnes, F. P., and Hilschmann, N. (1991).Biol. Chem. Hoppe-Seyler 372, 455–463.PubMedGoogle Scholar
  22. Krick, W., Disser, J., Hazama, A., Burckhardt, G., and Frömter, E. (1991).Pflügers Arch. 418, 491–499.CrossRefGoogle Scholar
  23. Laemmli, U. K. (1970).Nature 227, 680–685.CrossRefPubMedGoogle Scholar
  24. Laemmli, U. K., and Favre, M. (1973).J. Mol. Biol. 80, 575–599.CrossRefPubMedGoogle Scholar
  25. Light, D. B., Schwiebert, E. M., Fejes-Toth, G., Naray-Fejes-Toth, A., Karlson, K. H., McCann, F. V., and Stanton, B. A. (1990).Am. J. Physiol. 258, F273–280.PubMedGoogle Scholar
  26. Lindén, M., Gellerfors, P., and Nelson, B. D. (1982).FEBS Lett. 141, 189–192.CrossRefPubMedGoogle Scholar
  27. Lisanti, M. P., Scherer, P. E., Vidugiriene, J., Tang, Z. L., Hermanowski-Vosatka, A., Tu, Y.-H., Cook, R. F., and Sargiacomo, M. (1994).J. Cell Biol. 126, 111–126.PubMedGoogle Scholar
  28. Liu, M., and Colombini, M. (1991).Am. J. Physiol. 260, C371–374.PubMedGoogle Scholar
  29. Liu, M., and Colombini, M. (1992a).J. Bioenerg. Biomembr. 24, 41–46.CrossRefPubMedGoogle Scholar
  30. Liu, M., and Colombini, M. (1992b).Biochim. Biophys. Acta 1098, 255–260.PubMedGoogle Scholar
  31. Liu, M., Torgrimson, A., and Colombini, M. (1994).Biochim. Biophys. Acta 1185, 203–212.PubMedGoogle Scholar
  32. Mangan, P. S., and Colombini, M. (1987).Proc. Natl. Acad. Sci. USA 84, 4896–4900.PubMedGoogle Scholar
  33. McCabe, E. R. B. (1994).J. Bioenerg. Biomembr. 26, 317–325.CrossRefPubMedGoogle Scholar
  34. McEnery, M. W. (1992).J. Bioenerg. Biomembr. 24, 63–69.PubMedGoogle Scholar
  35. McEnery, M. W., Snowman, A. M., Trifiletti, R. R., and Snyder, S. H. (1992).Proc. Natl. Acad. Sci. USA 89, 3170–3174.PubMedGoogle Scholar
  36. McEnery, M. W., Dawson, T. M., Verma, A., Gurley, D., Colombini, M., and Snyder, S. H. (1993).J. Biol. Chem. 268, 23289–23296.PubMedGoogle Scholar
  37. Neuhoff, V., Arold, N., Taube, D., and Erhardt, W. (1988).Electrophoresis 9, 255–262.CrossRefPubMedGoogle Scholar
  38. östlund, A. K., Göhring, U., Krause, J., and Brdiczka, D. (1983).Biochem. Med. 30, 231–245.Google Scholar
  39. Puchelle, E., Jacquot, J., Fuchey, C., Burlet, H., Klossek, J.-M., Gilain, L., Triglia, J.-M., Thinnes, F. P., and Hilschmann, N. (1993).Biol. Chem. Hoppe-Seyler 374, 297–304.PubMedGoogle Scholar
  40. Reymann, S., Flörke, H., Heiden, M., Jakob, C., Stadtmüller, U., Steinacker, P., Lalk, V. E., Pardowitz, I., and Thinnes, F. P. (1995).Biochem. Mol. Med. 54, 75–87.CrossRefPubMedGoogle Scholar
  41. Sadoshima, J., Akaike, N., Tomoike, H., Kanaide, H., and Nakamura, M. (1989).Comp. Biochem. Physiol. 92A, 61–63.Google Scholar
  42. Schein, S. J., Colombini, M., and Finkelstein, A. (1976).J. Membr. Biol. 30, 99–120.CrossRefPubMedGoogle Scholar
  43. Sorgato, M. C., and Moran, O. (1993).Crit. Rev. Biochem. Mol. Biol. 18, 127–171.Google Scholar
  44. Sun, X. P., Supplisson, S., and Mayer, E. (1993).Am. J. Physiol. 264, G774-G785.PubMedGoogle Scholar
  45. Thomas, L., Blachly-Dyson, E. R., Colombini, M., and Forte, M. (1993).Proc. Natl. Acad. Sci. USA 90, 5446–5449.PubMedGoogle Scholar
  46. Thinnes, F. P., Götz, H., Kayser, H., Benz, R., Schmidt, W. E., Kratzin, H. D., and Hilschmann, N. (1989).Biol. Chem. Hoppe-Seyler 370, 1253–1264.PubMedGoogle Scholar
  47. Winkelbach, H., Walter, G., Morys-Wortmann, C., Paetzold, G., Hesse, D., Zimmermann, B., Flörke, H., Reymann, S., Stadtmüller, U., Thinnes, F. P., and Hilschmann, N. (1994).Biochem. Med. Metab. Biol. 52, 120–127.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Martin Heiden
    • 1
  • Katja Kroll
    • 1
  • Friedrich P. Thinnes
    • 1
  • Norbert Hilschmann
    • 1
  1. 1.Abteilung ImmunchemieMax-Planck-Institut für experimentelle MedizinGöttingenGermany

Personalised recommendations