Journal of Bioenergetics and Biomembranes

, Volume 28, Issue 2, pp 93–100

Is there VDAC in cell compartments other than the mitochondria?

  • Wei Hong Yu
  • Michael Forte
Article

Abstract

Higher eukaryotes, including mammals and plants, express a family of VDAC proteins each encoded by a distinct gene. Two human genes encoding VDAC isoforms (HVDAC1 and HVDAC2) have been characterized in greatest detail. These genes generate three proteins that differ primarily by the addition of distinct N terminal extensions in HVDAC2 and HVDAC2′, a splice variant of HVDAC2, relative to HVDAC1. Since N terminal sequences have been demonstrated to target many proteins to appropriate subcellular compartments, this observation raises the possibility that the N terminal differences found in HVDAC isoforms may lead to targeting of each protein to different cellular locations. Consistent with this hypothesis, a large number of reports have provided evidence consistent with the notion that HVDAC1 and its homolog in related mammalian species may specifically be present in the plasma membrane or other nonmitochondrial cellular compartments. Here, we review this information and conclude that if VDAC molecules are present at nonmitochondrial locations in mammalian cells, these are unlikely to be the known products of the HVDAC1 or HVDAC2 genes.

Key words

Mitochondria VDAC mammals plasma membrane human 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, V., Griffin, L., Towbin, J., Gelb, B., Worley, K., and McCabe, E. R. B. (1991).Biochem. Med. Metab. Biol. 45, 271–291.CrossRefPubMedGoogle Scholar
  2. Arora, K. K., and Pedersen, P. L. (1988).J. Biol. Chem. 263, 17422–17428.PubMedGoogle Scholar
  3. Arora, K. K., Fanciulli, M., and Pedersen, P. L. (1990).J. Biol. Chem. 265, 6481–6488.PubMedGoogle Scholar
  4. Babel, D., Walter, G., and Götz, W. (1991).Biol. Chem. Hoppe-Seyler 372, 1027–1034.PubMedGoogle Scholar
  5. Blachly-Dyson, E., Zambronicz, E. B., Yu, W. H., Adams, V., McCabe, E. R. B., Adelman, J., Colombini, M., and Forte, M. (1993).J. Biol. Chem. 268, 1835–1841.PubMedGoogle Scholar
  6. Blachly-Dyson, E., Baldini, A., Litt, M., McCabe, E. R. B., and Forte, M. (1994).Genomics 20, 62–67.CrossRefPubMedGoogle Scholar
  7. Blatz, A. L., and Magleby, K. L. (1983).Biophys. J. 43, 237–241.PubMedGoogle Scholar
  8. Brdiczka, D. (1990).Experientia 46, 161–167.CrossRefPubMedGoogle Scholar
  9. Brdiczka, D., and Wallimann, T. (1994).Cellular Bioenergetics: Role of Creatine Kinases (Saks, V., and Ventura-Clapier, R., eds.), Boston.Google Scholar
  10. Bureau, M. H., Khrestchatisky, M., Heeren, M., Zambrowicz, B. E., Kim, H., Grisar, T. M., Colombini, M., Tobin, A. J., and Olsen, R. W. (1992).J. Biol. Chem. 267, 8679–8684.PubMedGoogle Scholar
  11. Burk, D., Woods, M., and Hunter, J. (1967).J. Natl. Cancer Inst. 38, 839–863.PubMedGoogle Scholar
  12. Bustamante, E., and Pedersen, P. L. (1977).Proc. Natl. Acad. Sci. USA 74, 3735–3739.PubMedGoogle Scholar
  13. Bustamante, E., Morris, H. P., and Pedersen, P. (1981).J. Biol. Chem. 256, 8699–8704.PubMedGoogle Scholar
  14. Cole, T., Adil Awna, L., Nyakatura, E., Götz, H., Walter, G., Thinnes, F. P., and Hilschmann, N. (1992).Biol. Chem. Hoppe-Seyler 373, 891–896.PubMedGoogle Scholar
  15. Colombini, M. (1989).J. Membr. Biol. 111, 103–111.CrossRefPubMedGoogle Scholar
  16. Colombini, M., Blachly-Dyson, E., and Forte, M. (in press). InIon Channels.: VDAC, a Channel in the Outer Mitochondrial Membrane (Narahasi, T., ed.), Plenum Press, New York.Google Scholar
  17. Craigen, W. J., Lovell, R. S., and Sampson, M. J. (1994).Am. J. Hum. Genet., Suppl. 55, A130.Google Scholar
  18. De Pinto, V., Benz, R., Caggese, C., and Palmieri, F. (1989).Biochim. Biophys. Acta 987, 1–7.PubMedGoogle Scholar
  19. De Pinto, V., Prezioso, G., Thinnes, F., Link, T. A., and Palmieri, F. (1991).Biochemistry 30, 10191–10200.CrossRefPubMedGoogle Scholar
  20. Dermietzel, R., Hwang, T., Buettner, R., Hofer, A., Dotzler, E., Kremer, M., Deutzmann, R., Thinnes, F. P., Fishman, G. I., Spray, D. C., and Siemen, D. (1994).Proc. Natl. Acad. Sci. USA 91, 499–503.PubMedGoogle Scholar
  21. Fiek, C., Benz, R., Roos, N., and Brdiczka, D. (1982).Biochim. Biophys. Acta 688, 429–440.PubMedGoogle Scholar
  22. Freitag, H., Neupert, W., and Benz, R. (1982).Eur. J. Biochem. 123, 629–636.PubMedGoogle Scholar
  23. Gelb, B. D., Adams, V., Jones, S. N., Griffin, L. D., MacGregor, G. R., and McCabe, E. R. B. (1992).Proc. Natl. Acad. Sci. USA 89, 202–206.PubMedGoogle Scholar
  24. Ha, H., Hajek, P., Bedwell, D. M., and Burrows, P. D. (1993).J. Biol. Chem. 268, 12143–12149.PubMedGoogle Scholar
  25. Hains, L., Mentzel, H., Schmid, A., Benz, R., and Schmitz, U. K. (1994).J. Biol. Chem. 269, 26402–26410.PubMedGoogle Scholar
  26. Jalonen, T., Johansson, S., Holopainen, I., Oja, S. S., and Arhhem, P. (1989).Acta Physiol. Scand. 136, 611–612.PubMedGoogle Scholar
  27. Kabir, F., and Nelson, B. D. (1991).Biochim. Biophys. Acta 1057, 147–150.PubMedGoogle Scholar
  28. Kayser, H., Kratzin, H. D., Thinnes, F. P., Götz, H., Schmidt, W. E., Eckart, K., and Hilschmann, N. (1989).Biol. Chem. HopperSeyler 370, 1265–1278.Google Scholar
  29. König, U., Götz, H., Walter, G., Babel, D., Hohmeier, H., Thinnes, F. P., and Hilschmann, N. (1991).Biol. Chem. Hoppe-Seyler 372, 565–572.PubMedGoogle Scholar
  30. Konstantinova, S. A., Mannella, C. A., Skulachev, V. P., and Zorov, D. B. (1995).J. Bioenerg. Biomembr., in press.Google Scholar
  31. Kottke, M., Adam, V., Riesinger, I., Bremm, G., Bosch, W., Brdiczka, D., Sandri, G. and Panfili, E. (1988).Biochim. Biophys. Acta 935, 87–102.PubMedGoogle Scholar
  32. Lindén, M., Gellerfors, P., and Nelson, B. D. (1982).FEBS Lett. 141, 189–192.CrossRefPubMedGoogle Scholar
  33. Lindén, M., Andersson, G., Gellerfors, P., and Nelson, B. D. (1984).Biochim. Biophys. Acta 770, 93–96.PubMedGoogle Scholar
  34. Lisanti, M. P., Scherer, P. E., Vidugiriene, J., Tang, Z., Hermanowski-Vosatka, A., Tu, Y.-H., Cook, R. F., and Sargiacomo, M. (1994).J. Cell Biol. 126, 111–126.PubMedGoogle Scholar
  35. Müller, G., Komdörfer, A., Kornak, U., and Malaisser, W. J. (1994).Arch. Biochem. Biophys. 308, 8–23.CrossRefPubMedGoogle Scholar
  36. Nakashima, R. A., Paggi, M. G., and Pedersen, P. L. (1984).Cancer Res. 44, 5702–5706.PubMedGoogle Scholar
  37. Nakashima, R. A., Mangan, P. S., Colombini, M., and Pedersen, P. L. (1986).Biochemistry 25, 1015–1021.CrossRefPubMedGoogle Scholar
  38. Olsen, R. W., and Tobin, A. J. (1990).FASEB J. 4, 1469–1480.PubMedGoogle Scholar
  39. Polaskis, P. G., and Wilson, J. E. (1985).Arch. Biochem. Biophys. 236, 328–337.CrossRefPubMedGoogle Scholar
  40. Schein, S. J., Colombini, M., and Finkelstein, A. (1976).J. Membr. Biol. 30, 99–120.CrossRefPubMedGoogle Scholar
  41. Schwab, D. A., and Wilson, J. E. (1989).Proc. Natl. Acad. Sci. USA 86, 2563–2567.PubMedGoogle Scholar
  42. Sigel, E., Baur, R., Trube, G., Möhler, H., and Malherbe, P. (1990).Neuron 5, 703–711.CrossRefPubMedGoogle Scholar
  43. Simon, S. M., and Blobel, G. (1991).Cell 65, 371–380.CrossRefPubMedGoogle Scholar
  44. Singh, V. N., Singh, M., August, J. T., and Horecker, B. L. (1974).Proc. Nat. Acad. Sci. USA 71, 4129–4132.PubMedGoogle Scholar
  45. Sorgato, M. C., and Moran, O. (1993).Crit. Rev. Biochem. Mol. Biol. 28, 127–171.PubMedGoogle Scholar
  46. Thinnes, F. P. (1992).J. Bioenerg. Biomembr. 24, 71–75.CrossRefPubMedGoogle Scholar
  47. Thinnes, F. P., Götz, H., Kayser, H., Benz, R., Schmidt, W. E., Kratzin, H. D., and Hilschmann, N. (1989).Biol. Chem. Hoppe-Seyler 370, 1253–1264.PubMedGoogle Scholar
  48. Verdoorn, T. A., Draguhn, A., Ymer, S., Seeburg, P. H., and Sakmann, B. (1990).Neuron 4, 919–928.CrossRefPubMedGoogle Scholar
  49. Weinhouse, S. (1972).Cancer Res. 32, 2007–2016.PubMedGoogle Scholar
  50. Yu, W. H., Wolfgang, W., and Forte, M. (1995).J. Biol. Chem. 270, in press.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Wei Hong Yu
    • 1
    • 2
  • Michael Forte
    • 1
  1. 1.Vollum InstituteUSA
  2. 2.Department of Cell and Developmental BiologyOregon Health Sciences UniversityPortland

Personalised recommendations