Advertisement

Journal of Mathematical Sciences

, Volume 70, Issue 2, pp 1647–1665 | Cite as

Natural bundles and operators

  • I. Kolář
Article
  • 31 Downloads

Abstract

This paper discusses the global theory of differentially geometric objects.

Keywords

Geometric Object Global Theory Natural Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Alekseevskii, A. M. Vinogradov, and V. V. Lychagin, “Geometry. 1,” Itogi Nauki Tekhn. Sovrem. Probl., Matem., Fundam. Napravl.,28, 297 (1988).Google Scholar
  2. 2.
    G. B. Gurevich, Fundamentals of the Theory of Algebraic Invariants [in Russian], OGIZ, Moscow-Leningrad (1948).Google Scholar
  3. 3.
    A. A. Kirillov, “Invariant operators on geometric variables,” Itogi Nauki Tekhn. Sovrem. Probl. Matem., Nov. Dostizhen.,16, 3–29 (1980).Google Scholar
  4. 4.
    A. Cabra, I. Kolář, and M. Modugno, “General structured bundles,” Rend. Circ. Mat. Palermo, in press.Google Scholar
  5. 5.
    F. Cantrijn, M. Crampin, W. Sarlet, and D. Saunders, “The canonical isomorphism between TkT*M and T*TkM,” CRAS Paris, Ser. II,309, 1509–1514 (1989).Google Scholar
  6. 6.
    A. Cap, “All linear and bilinear natural concomitants of vector valued differential forms,” Comment. Math. Univ. Carol., in press.Google Scholar
  7. 7.
    J. Chrastina, “On a theorem of J. Peetre,” Arch. Math.,23, 71–76 (1987).Google Scholar
  8. 8.
    A. Dekrét, “Mechanical structures and connections,” in: Proc. Conf. Dubrovnik, (1988), pp. 121–132.Google Scholar
  9. 9.
    A. Dekrét, “On mechanical systems of second order on manifolds,” in: Proc. Conf. Eger, in press.Google Scholar
  10. 10.
    A. Dekrét, “Vector fields and connections of fibred manifolds,” Rend. Circ. Mat. Palermo, in press.Google Scholar
  11. 11.
    A. Dekrét and G. Vosmanská, “Natural transformations of 2-quasijets,” in press.Google Scholar
  12. 12.
    J. A. Dieudonné and J. B. Carrell, Invariant Theory, Old and New, Acad. Press, New York—London (1971).Google Scholar
  13. 13.
    M. Doupovec, “Natural operators transforming vector fields to the second order tangent bundle,” Čas. Pěstov. Mat.,115, No. 1, 64–72 (1990).Google Scholar
  14. 14.
    M. Doupovec, “Natural transformations between T1 2T*M and T*T1 2M,” Ann. Pol. Math., in press.Google Scholar
  15. 15.
    M. Doupovec and I. Kolář, “On the natural operators transforming connections to the tangent bundle of a fibred manifold,” Knižnice VUT Brno,B119, 47–56 (1988).Google Scholar
  16. 16.
    M. Doupovec and I. Kolář, “Natural affinors on time-dependent Weil bundles,” Arch. Math., in press.Google Scholar
  17. 17.
    D. J. Eck, “Gauge-natural bundles and generalized gauge theories,” Mem. Amer. Math. Soc,247, (1981).Google Scholar
  18. 18.
    D. J. Eck, “Product-preserving functors on smooth manifolds,” J. Pure Appl. Algebra,42, 133–140 (1986).Google Scholar
  19. 19.
    D. J. Eck, “Natural sheaves,” III. J. Math.,31, 200–207 (1987).Google Scholar
  20. 20.
    C. Ehresmann, “Les prolongements d'une variété différentiable. I. Calcul des jets, prolongement principal,” C. R. Acad. Sci., Paris,233, 598–600 (1951).Google Scholar
  21. 21.
    C. Ehresmann, “Les prolongements d'une variété différentiable. IV. Eléments de contact et éléments d'enveloppe,” C. R. Acad. Sci., Paris,234, 1028–1030 (1952).Google Scholar
  22. 22.
    C. Ehresmann, “Les prolongements d'un espace fibré différentiable,” C. R. Acad. Sci., Paris, 1755–1757 (1955).Google Scholar
  23. 23.
    D. B. A. Epstein, “Natural vector bundles. Category theory, homology theory and their applications. III,” Lect. Notes Math.,99, 171–195 (1969).Google Scholar
  24. 24.
    D. B. A. Epstein, “Natural tensors on Riemannian manifolds,” J. Different. Geom.,10, 631–645 (1975).Google Scholar
  25. 25.
    D. B. A. Epstein and W. P. Thurston, “Transformation groups and natural bundles,” Proc. London Math. Soc.,38, 219–236 (1979).Google Scholar
  26. 26.
    A. Frölicher and A. Nijenhuis, “A theory of vectorvalued differential forms. Part I,” Indag. Math.,18, 338–359 (1956).Google Scholar
  27. 27.
    J. Gancarzewicz, “Liftings of functions and vector fields to natural bundles,” Dissert. Math.,CCXII, Warsaw (1983).Google Scholar
  28. 28.
    J. Gancarzewicz, “Des relèvements des fonctions aux fibrés naturels,” C. R. Acad. Sci., Paris, Ser. I,295, 743–746 (1982).Google Scholar
  29. 29.
    J. Gancarzewicz, “Relèvements des champs de vecteurs aux fibrés naturels,” C. R. Acad. Sci., Paris, Ser. I,296, 59–61 (1983).Google Scholar
  30. 30.
    J. Gancarzewicz, “Horizontal lifts of connections to the natural vector bundles,” in: Different. Geom.: Proc. Colloq. Santiago de Compos., Boston (1985), pp. 318–241.Google Scholar
  31. 31.
    J. Gancarzewicz and I. Kolář, “Some gauge-natural operators on linear connection,” Monats. Math., in press.Google Scholar
  32. 32.
    J. Gancarzewicz and S. Mahi, “Lifts of 1-forms to the tangent bundle of higher-order,” in press.Google Scholar
  33. 33.
    P. B. Gilkey, “Curvature and the eigenvalues of the Laplacian for elliptic complexes,” Adv. Math.,10, 344–382 (1973).Google Scholar
  34. 34.
    H. Gollek, “Anwendungen der Jet-Theorie auf Faserbündel und Liesche Transformationgruppen,” Math. Nachr.,53, 161–180 (1972).Google Scholar
  35. 35.
    J. Janyška, “Geometric properties of prolongation functors,” Cas. Pěstov. Mat.,110, No. 1, 77–86 (1985).Google Scholar
  36. 36.
    J. Janyška, “On natural operations with linear connections,” Czech. Math. J.,35, No. 1, 106–115 (1985).Google Scholar
  37. 37.
    J. Janyška, “Natural and gauge-natural operators on the space of linear connections on a vector bundle,” in: Proc. Conf. Different. Geom. and Appl. Brno 1989, World Sci. Publ. Co., Singapore (1990), pp. 58–68.Google Scholar
  38. 38.
    J. Janyška, “Natural operations with projectable tangent valued form on a fibred manifold,” in press.Google Scholar
  39. 39.
    J. Janyška and I. Kolář, “On the connections naturally induced on the second order frame bundle,” Arch. Math.,22, 21–28 (1986).Google Scholar
  40. 40.
    J. Janyška and M. Modugno, “Infinitesimal natural and gauge-natural lifts,” Different. Geom. and Appl., in press.Google Scholar
  41. 41.
    G. Kainz and P. W. Michor, “Natural transformations in differential geometry,” Czech. Math. J.,37, 584–607 (1987).Google Scholar
  42. 42.
    P. Kobak, “Natual liftings of vector fields to tangent bundles of 1-forms,” Čas. Pěstov. Mat., in press.Google Scholar
  43. 43.
    S. Kobayashi, “Theory of connections,” Ann. Mat. Pura Appl.,43, 119–185 (1957).Google Scholar
  44. 44.
    A. Kock, “Synthetic differential geometry,” London Math. Soc. Lect. Notes,51, (1981).Google Scholar
  45. 45.
    I. Kolář, “Canonical forms on the prolongations of principal fibre bundles,” Rev. Roum. Math. Pures Appl,16, 1091–1106 (1971).Google Scholar
  46. 46.
    I. Kolář, “On the prolongations of geometric object fields,” An. Sti. Univ. Iasi, Sec. I,17, 437–446 (1971).Google Scholar
  47. 47.
    I. Kolář, “On the automorphisms of principal fibre bundles,” Comment. Math. Univ. Carol.,21, 390–312 (1980).Google Scholar
  48. 48.
    I. Kolář, “Structure morphisms of prolongation functors,” Math. Slovaca,30, No. 1, 83–93 (1980).Google Scholar
  49. 49.
    I. Kolář, “Connections in 2-fibred manifolds,” Arch. Math.,17, 23–30 (1981).Google Scholar
  50. 50.
    I. Kolář, “Fiber parallelism and connections,” in: Proc. Colloq. Global Different. Geom. Global Analysis, Lect. Notes Math.,383, 165–173 (1981).Google Scholar
  51. 51.
    I. Kolář, “Prolongations of generalized connections,” in: Colloq. Math. Soc. Janos Bolyai: Different. Geom., North Holland, (1982), pp. 317–325.Google Scholar
  52. 52.
    I. Kolář, “Functorial prolongations of Lie groups and their actions,” Čas. Pěstov. Mat.,108, 289–293(1983).Google Scholar
  53. 53.
    I. Kolář, “Natural transformations of the second tangent functor into itself,” Arch. Math.,20, No. 4, 169–172 (1984).Google Scholar
  54. 54.
    I. Kolář, “Higher order absolute differentiation with respect to generalized connections,” Different. Geom.: Banach Center Publ.,12, 153–162.Google Scholar
  55. 55.
    I. Kolář, “Natural operations with connections on second order frame bundles,” in: Topics in Different. Geom.: Colloq. Debrecen 1984, Amsterdam (1988).Google Scholar
  56. 56.
    I. Kolář, “Covariant approach to natural transformations of Weil functors,” Comment. Math. Univ. Carol.,27, 723–729 (1986).Google Scholar
  57. 57.
    I. Kolář, “Some natural operations with connections,” J. Nat. Acad. Math. India,5, 127–141 (1987).Google Scholar
  58. 58.
    I. Kolář, “Some natural operators in differential geometry,” in: Conf. Different. Geom. and Its Appl.: Proc. Conf. Brno 1986, Dordrecht (1987), pp. 91–100.Google Scholar
  59. 59.
    I. Kolář, “On the natural operators on vector fields,” Ann. Global Anal. Geom.,6, No. 2, 109–117 (1988).Google Scholar
  60. 60.
    I. Kolář, “Natural operators transforming vector fields and exterior forms into exterior forms,” Sci. Period. Salesian Techn. Univ., in press.Google Scholar
  61. 61.
    I. Kolář, “Gauge-natural operators transforming connections to the tangent bundle,” in: Math. Heritage of C. F. Gauss, World Sci. Pub. Co., Singapore (in press).Google Scholar
  62. 62.
    I. Kolář, “Some gauge-natural operators on connection,” in: Proc. Conf. Eger, in press.Google Scholar
  63. 63.
    I. Kolář, “General natural bundles and operators,” Proc. Conf. Different. Geom. and Appl. Brno 1989, World Scientific, Singapore (1990), pp. 69–72.Google Scholar
  64. 64.
    I. Kolář and P. W. Michor, “All natural concomitants of vector valued differential forms,” Rend. Circ. Mat. Palermo, Ser. 2,36 (Suppl. 16), 101–108 (1987).Google Scholar
  65. 65.
    I. Kolář, P. W. Michor, and J. Slovák, Natural Operations in Differential Geometry, in press.Google Scholar
  66. 66.
    I. Kolář and M. Modugno, “Natural maps on the iterated jet prolongation of a fibred manifold,” Ann. Mat., in press.Google Scholar
  67. 67.
    I. Kolář and M. Modugno, “Torsions of connections on some natural bundles,” Different. Geom. Appl., in press.Google Scholar
  68. 68.
    I. Kolář and Z. Radziszewski, “Natural transformations of second tangent and cotangent functors,” Czech. Math. J.,38(113), 274–279 (1988).Google Scholar
  69. 69.
    I. Kolář and J. Slovák, “On the geometric functors on manifolds,” Rend. Circ. Math. Ser. 2,38(Suppl. No. 2), 223–233 (1990).Google Scholar
  70. 70.
    I. Kolář and J. Slovák, “Prolongation of vector fields to jet bundles,” Rend. Circ. Mat. Palermo, Ser. 2, Suppl. No. 22, 103–111 (1990).Google Scholar
  71. 71.
    I. Kolář and G. Vosmanská, “Natural operations with second order jets,” Rend. Circ. Mat. Palermo, Ser. 2,36(Suppl. No. 14), 179–176 (1987).Google Scholar
  72. 72.
    I. Kolář and G. Vosmanská, “Natural transformations of higher order tangent bundles and jet spaces,” Čas. Pěstov. Mat.,114, No. 2, 181–186 (1989).Google Scholar
  73. 73.
    O. Kowalski and M. Sekizawa, “Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles — a classification,” Bull. Tokyo Gakugei Univ. Sect. IV,40, 1–29 (1988).Google Scholar
  74. 74.
    O. Kowalski and M. Sekizawa, “Natural transformations of Riemannian metrics on manifolds to metrics on linear frame bundles — a classification,” in: Different. Geom. and Its Appl.: Proc. Conf. Brno 1986, Dordrecht, (1987), pp. 149–178.Google Scholar
  75. 75.
    D. Krupka, “Elementary theory of differential invariants,” Arch. Math.,14, No. 4, 207–214 (1978).Google Scholar
  76. 76.
    D. Krupka, “Fundamental vector fields on type fibres of jet prolongations of tensor bundles,” Math. Slovaca,29, No. 2, 159–167 (1979).Google Scholar
  77. 77.
    D. Krupka, “Local invariants of a linear connection,” in: Colloq. Math. Soc. János Bolyai: Different. Geom.,31, (1979).Google Scholar
  78. 78.
    D. Krupka, “On the Lie algebras of higher differential groups,” Bull. Acad. Pol. Sci. Ser., Sci. Math.,27, Nos. 3–4, 235–239 (1979).Google Scholar
  79. 79.
    D. Krupka, “Reducibility theorems for differentiable liftings in fibre bundles,” Arch. Math.,15, No. 2, 93–106 (1979).Google Scholar
  80. 80.
    D. Krupka, “Finite order liftings in principal fibre bundles,” Wiss. Beitr. M., Luther. Univ. Hell—Wittenberg,11, No. 21, 21–27 (1981).Google Scholar
  81. 81.
    D. Krupka and J. Janyška, Lectures on Differential Invariants, Univ. J. E. Purkyně, Brno (1990).Google Scholar
  82. 82.
    D. Krupka and V. Mikolásová, “On the uniqueness of some differential invariants d, [,], ▿,” Czech. Math. J.,34, 588–597(1984).Google Scholar
  83. 83.
    D. Krupka and A. Trautman, “General invariance of Langrangian structures,” Bull. Acad. Pol. Sci., Ser. Sci. Math.,22, 207–211 (1974).Google Scholar
  84. 84.
    J. Kurek, “On the natural operators of Bianchi type,” Arch. Math., in press.Google Scholar
  85. 85.
    J. Kurek, “On natural operators on sectorform fields,” Čas. Pěstov. Mat., in press.Google Scholar
  86. 86.
    H. Leicher, “Natural operations on covariant tensor fields,” J. Different. Geom.,8, 117–123 (1973).Google Scholar
  87. 87.
    M. De Léon and P. R. Rodrigues, “Generalized classical mechanics and field theory,” North Holland, Amsterdam (1985).Google Scholar
  88. 88.
    M. De Léon and P. R. Rodrigues,” Dynamical connections and non-autonomous Lagrangian systems,” Ann. Fac. Sci. Toulouse Math.,9, 171–181 (1988).Google Scholar
  89. 89.
    P. Libermann, “Sur les prolongements des fibrés principaux et des groupoides différentiables banachiques,” in: Anal. Global Semin. Math. Supérieures, No. 42, 7–108 (1971).Google Scholar
  90. 90.
    P. Libermann, “Parallélismes,” J. Différent. Geom.,8, 511–539 (1973).Google Scholar
  91. 91.
    G. Lubczonok, “On the reduction theorems,” Ann. Pol. Math.,26, No. 2, 125–133 (1972).Google Scholar
  92. 92.
    O. O. Luciano, “Categories of multiplicative functors and Weil's infinitely near points,” Nagoya Math. J.,109, 69–89 (1988).Google Scholar
  93. 93.
    D. Luna, “Fonctions différentibles invariantes sous l'operation d'un groupe reductif,” Ann. Inst. Fourier,26, No. 1, 33–49 (1976).Google Scholar
  94. 94.
    L. Mangiarotti and M. Modugno, “New operators on jet spaces,” Ann. Fac. Sci. Toulouse,2(5), 171–198 (1983).Google Scholar
  95. 95.
    L. Mangiarotti and M. Modugno, “Graded Lie algebras and connections on a fibred space,” J. Math. Pures Appl.,63, No. 1, 111–120 (1984).Google Scholar
  96. 96.
    P. W. Michor, “Remarks on the Frölicher—Nijenhuis bracket,” in: Proc. Conf. Different. Geom. and Appl. Brno 1986, Reidel, (1987), pp. 197–220.Google Scholar
  97. 97.
    P. W. Michor, “Remarks on the Schouter—Nijenhuis bracket,” Rend. Circ. Mat. Palermo,36(Suppl. No. 16), 297–215 (1987).Google Scholar
  98. 98.
    W. M. Mikulski, “Locally determined associated spaces,” J. London Math. Soc.,32, No. 2, 357–364 (1985).Google Scholar
  99. 99.
    W. M. Mikulski, “There exists a prolongation functor of infinite order,” Čas. Pěstov. Mat.,114, No. 1, 57–59 (1989).Google Scholar
  100. 100.
    W. M. Mikulski, “Natural transformations of Weil functors into bundle functors,” Rend. Circ. Mat. Palermo, Ser. 2,22, 177–191 (1989).Google Scholar
  101. 101.
    J. W. Milnor and J. D. Stasheff, “Characteristic classes,” Ann. Math. Stud.,76, (1974).Google Scholar
  102. 102.
    M. Modugno, “Systems of vector valued forms on a fibred manifold and applications to gauge theories,” Lect. Notes Math.,1251, 238–264 (1987).Google Scholar
  103. 103.
    M. Modugno, “Jet involution and prolongation of connections,” Čas. Pěstov. Mat.,114, No. 4, 356–365 (1989).Google Scholar
  104. 104.
    M. Modugno and G. Stefani, “Some results on second tangent and cotangent spaces,” Quaderni dell'Inst. Math. Univ. di Lecce Q,16, (1978).Google Scholar
  105. 105.
    A. Morimoto, “Prolongations of connections to bundles of infinitely near points,” J. Different. Geom.,11, 479–498 (1976).Google Scholar
  106. 106.
    A. Nijenhuis, “Natural bundles and their general properties,” in: Different. Geom. in Honor of K. Yano, Kinokuniya, Tokyo (1972), pp. 317–334.Google Scholar
  107. 107.
    A. Nijenhuis, “Invariant differentiation techniques,” in: Geom. Proc. 1985 Commun. Int. Meet. Geom. Meth. Non-Linear Field Theory, Singapore (1985), pp. 249–266.Google Scholar
  108. 108.
    R. Palais, “Natural operations on differential forms,” Trans. Am. Math. Soc.,92, No. 1, 125–141 (1959).Google Scholar
  109. 109.
    R. Palais and C. L. Terng, “Natural bundles have finite order,” Topology,16, 271–277 (1977).Google Scholar
  110. 110.
    J. Peetre, “Rectifications à l'article ‘Une caracterisation abstraite des opérateurs différentiels’,” Math. Scand.,8, No. 1, 116–120 (1960).Google Scholar
  111. 111.
    Z. Pogoda, “The regularity condition for some natural functors,” Rend. Circ. Mat. Palermo, Suppl. No. 14, 105–115 (1987).Google Scholar
  112. 112.
    J. Pradines, “Fibres vectoriels doubles symmétriques et jets holonomes d'ordre 2,” C. R. Acad. Sci., Ser. A,278, No. 24, 1557–1560 (1974).Google Scholar
  113. 113.
    N. Que, “Du prolongements des espaces fibrés et des structures infinitésimales,” Ann. Inst. Fourier,17, 157–223 (1967).Google Scholar
  114. 114.
    B. L. Reinhart, Differential Geometry of Foliations: The Fundamental Integrability Problem, Springer (1983).Google Scholar
  115. 115.
    S. Salvioli, “On the theory of geometric objects,” J. Different. Geom.,7, Nos. 1–2, 257–278 (1972).Google Scholar
  116. 116.
    M. Sekizawa, “Natural transformations of affine conenctions on manifolds to metrics on cotangent bundles,” Rend. Circ. Mat. Palermo,36(Suppl. No. 14), 101–108 (1987).Google Scholar
  117. 117.
    M. Sekizawa, “Natural transformations of vector fields on manifolds to vector fields on tangent bundles,” Tsukuba J. Math.,12, No. 1, 115–128 (1988).Google Scholar
  118. 118.
    M. Sekizawa, “Natural transformations of symmetric affine connections on manifolds to metrics on linear frame bundle — a classification,” Montash. Math.,105, 229–243 (1988).Google Scholar
  119. 119.
    J. Slovák, “Smooth structures on fibre jet spaces,” Czech. Math.,36, 358–375 (1986).Google Scholar
  120. 120.
    J. Slovák, “Prolongations of connections and sprays with respect to Weil functors,” Rend. Circ. Mat. Palermo,36(Suppl. 14), 143–155 (1987).Google Scholar
  121. 121.
    J. Slovák, “On the finite order of some operators,” in: Proc. Conf. Different. Geom. and Appl. Brno 1986, Commun. Different. Geom. and Appl., (1987), pp. 283–294.Google Scholar
  122. 122.
    J. Slovák, “Peetre theorem for nonlinear operators,” Ann. Global Anal. Geom.,6, No. 3, 273–283 (1988).Google Scholar
  123. 123.
    J. Slovák, “On natural connections on Riemannian manifolds,” Comment. Math. Univ. Carol.,30, No. 2, 389–393 (1989).Google Scholar
  124. 124.
    J. Slovák, “Action of jet groups on manifolds,” in: Proc. Conf. Different. Geom. and Appl. Brno 1989, World Sci., Singapore (1990), pp. 178–186.Google Scholar
  125. 125.
    J. Slovák, “Bundle functors on fibred manifolds,” Ann. Global. Anal. Geom., in press.Google Scholar
  126. 126.
    P. Stredder, “Natural differential operators on Riemannian manifolds and representations of the orthogonal and spectral orthogonal group,” J. Different. Geom.,10, No. 4, 647–660 (1975).Google Scholar
  127. 127.
    S. van Strien, “Unicity of the Lie product,” Comp. Math.,40, 79–85 (1980).Google Scholar
  128. 128.
    C. L. Terng, “Natural vector bundles and natrual differential operators,” Amer. J. Math.,100, No. 4, 775–828 (1978).Google Scholar
  129. 129.
    J. Virsik, “A generalized point of view to higher order connections on fibre bundles,” Czech. Math. J.,19, 110–142 (1969).Google Scholar
  130. 130.
    A. Weil, “Théorie des points proches sur les variétés différentialles,” in: Colloq. de Topol. Geom. Different. Strasbourg, (1953), pp. 111–117.Google Scholar
  131. 131.
    M. de Wilde and P. Lecomte, “Algebraic characterizations of the algebra of functions and of the Lie algebra of vector fields on a manifold,” Compos. Math.45, 199–205 (1982).Google Scholar
  132. 132.
    A. Zajtz, “A classification of natural bundles,” in: Colloq. Mat. Soc. Janos Bolyai, Topics in Different. Geom, Debrecen (1984), pp. 1333–1357.Google Scholar
  133. 133.
    A. Zajtz, “The sharp upper bound on the order of natural bundles of given dimensions,” Bull. Soc. Math. Belg.,B39, 347–357 (1987).Google Scholar
  134. 134.
    A. Zajtz, “Geometric objects with finitely determined germs,” Ann. Pol. Math.,49, No. 2, 157–168 (1988).Google Scholar
  135. 135.
    A. Zajtz, “On the order of natural operators and liftings,” Ann. Pol. Math.,49, No. 2, 179–178 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • I. Kolář

There are no affiliations available

Personalised recommendations