Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 28, Issue 6, pp 459–469 | Cite as

Reconstituted Cl pump protein: A novel ion(Cl)-motive ATPase

  • George A. Gerencser
  • Karnam R. Purushotham
Research Articles

Abstract

Cl absorption by theAplysia californica foregut is effected through an active Cl transport mechanism located in the basolateral membrane of the epithelial absorptive cells. These basolateral membranes contain both Cl-stimulated ATPase and ATP-dependent Cl transport activities which can be incorporated into liposomes via reconstitution. Utilizing the proteoliposomal preparation, it was demonstrated that ATP, and its subsequent hydrolysis, Mg2+, Cl, and a pH optimum of 7.8 were required to generate maximal intraliposomal Cl accumulation, electrical negativity, and ATPase activity. Additionally, an inwardly-directed valinomycininduced K+ diffusion potential, making the liposome interior electrically positive, enhanced both ATP-driven Cl accumulation and electrical potential while an outwardly-directed valinomycininduced K+ diffusion potential, making the liposome interior electrically negative, decreased both ATP-driven Cl accumulation and electrical potential compared with proteoliposomes lacking the ionophore. Either orthovanadate orp-chloromercurobenzene sulfonate inhibited both the ATP-dependent intraliposomal Cl accumulation, intraliposomal negative potential difference, and also Cl-stimulated ATPase activity. Both aspects of Cl pump transport kinetics and its associated catalytic component kinetics were the first obtained utilizing a reconstituted transporter protein. These results strongly support the hypothesis that Cl-ATPase actively transports Cl by an electrogenic process.

Key words

Ion-motive ATPase chloride pump catalytic and transport kinetics electrogenic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanck, A., and Oeslerhelt, D. (1987).EMBO J. 6, 265–273.PubMedGoogle Scholar
  2. Gerencser, G. A. (1981).Am. J. Physiol. 240, R61-R69.PubMedGoogle Scholar
  3. Gerencser, G. A. (1983).Am. J. Physiol. 244, R143-R149.PubMedGoogle Scholar
  4. Gerencser, G. A. (1984).Biochim. Biophys. Acta 775, 389–394.PubMedGoogle Scholar
  5. Gerencser, G. A. (1988).Am. J. Physiol. 254, R127-R133.PubMedGoogle Scholar
  6. Gerencser, G. A. (1990).Biochim. Biophys. Acta 1030, 301–303.PubMedGoogle Scholar
  7. Gerencser, G. A. (1993a).FEBS Lett. 333, 137–140.PubMedGoogle Scholar
  8. Gerencser, G. A. (1993b).Biochem. Biophys. Res. Commun. 196, 1188–1194.PubMedGoogle Scholar
  9. Gerencser, G. A., and Lee, S. H. (1985a).Am. J. Physiol. 248, R241-R248.PubMedGoogle Scholar
  10. Gerencser, G. A., and Lee, S. H. (1985b).Biochim. Biophys. Acta 816, 415–417.Google Scholar
  11. Gerencser, G. A., and White, J. F. (1980).Am. J. Physiol. 239, R445-R449.PubMedGoogle Scholar
  12. Gerencser, G. A., and Zelezna, B. (1992).Zool. Sci. 9, 925–939.Google Scholar
  13. Gerencser, G. A., and Zelezna, B. (1993).Proc Natl. Acad. Sci. 90, 7970–7974.PubMedGoogle Scholar
  14. Gerencser, G. A., White, J. F., Gradmann, D., and Bonting, S. L. (1988).Am. J. Physiol. 255, R677-R692.PubMedGoogle Scholar
  15. Ikeda, M., Schmid, R., and Oesterhelt, D. (1990).Biochemistry 29, 2057–2065.PubMedGoogle Scholar
  16. Inagaki, C., and Shiroya, T. (1988).Biochem. Biophys. Res. Commun. 154, 108–112.PubMedGoogle Scholar
  17. Lukacovic, M. F., Feinstein, M. B., Shalafi, R. I., and Perrine, S. (1981).Biochemistry 20, 3145–3151.PubMedGoogle Scholar
  18. McCormick, J. I., Silivius, J. R., and Johnstone, R. M. (1985).J. Biol. Chem. 260, 5706–5714.PubMedGoogle Scholar
  19. Nyren, P., and Baltscheffsky, M. (1983).FEBS Lett. 155, 125–130.PubMedGoogle Scholar
  20. Pedersen, P. L., and Carafoli, E. (1987).Trends Biochem. Sci. 12, 146–150.Google Scholar
  21. Post, R. L., Sen, A. K., and Rosenthal, A. S. (1965).J. Biol. Chem. 240, 1437–1445.PubMedGoogle Scholar
  22. Rothstein, A. (1970).Current Topics in Membranes and Transport (Bronner, F., and Kleinzeller, A., eds.), Academic Press, New York, pp. 135–176.Google Scholar
  23. Schuurmans-Stekhoven, F., and Bonting, S. L. (1981).Physiol. Rev. 61, 1–76.PubMedGoogle Scholar
  24. Shiroya, T., Fukunaga, R., Akashi, K., Shimada, N., Takagi, Y., Nishino, T., Hara, M., and Inagaki, C. (1989).J. Biol. Chem. 264, 17416–17421.PubMedGoogle Scholar
  25. Slayman, C. L., and Zuckier, G. R. (1989). InBicarbonate, Chloride, and Proton Transport Systems (Durham, J., and Hardy, M., eds.),Ann. N.Y. Acad. Sci. 574, 233–245.Google Scholar
  26. Vara, F., and Serrano, R. (1982).J. Biol. Chem. 257, 12826–12830.PubMedGoogle Scholar
  27. Zeng, X-T., Hara, M., and Inagaki, C. (1994).Brain Res. 641, 167–170.PubMedGoogle Scholar
  28. Zimniak, P., and Racker, E. (1978).J. Biol. Chem. 253, 4631–4637.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • George A. Gerencser
    • 1
  • Karnam R. Purushotham
    • 2
  1. 1.Department of Physiology, College of MedicineUniversity of FloridaGainesville
  2. 2.Department of Oral Biology, College of DentistryUniversity of FloridaGainesville

Personalised recommendations