Mathematical Notes

, Volume 55, Issue 5, pp 446–454 | Cite as

Images of wavelets under the influence of convolution operators

  • M. Z. Berkolaiko
  • I. Ya. Novikov


Convolution Convolution Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Frazier and B. Jawerth, “A discrete transform and decomposition of distribution spaces,” J. Funct. Anal.,33, No. 1, 13–170 (1990).Google Scholar
  2. 2.
    R. H. Torres, “Boundedness results for operators with singular kernel on distribution spaces,” Mem. AMS,90, No. 442, 1–172 (1991).Google Scholar
  3. 3.
    M. Frazier, B. Jawerth, and G. Weiss, “Littlewood—Paley Theory and the study of function spaces,” CBMS-AMS Regional Conf. Ser.,79, 1991.Google Scholar
  4. 4.
    J. Meyer, “Principe d'incertitude, bases hilbertiennes et algebres d'operateurs,” Sem. Bourbaki, No. 662, 1–15 (1985–1986).Google Scholar
  5. 5.
    P. G. Lemarie and J. Meyer, “Ondelettes et bases hilbertiennes,” Rev. Math. Iboamer.,2, 1–118 (1986).Google Scholar
  6. 6.
    I. Daubeshies, “Orthonormal bases of wavelets with compact support,” Comm. Pure Appl. Math.,41, 909–996 (1987).Google Scholar
  7. 7.
    M. Z. Berkolaiko and I. Ya. Novikov, “Unconditional wavelet bases in spaces of differentiable functions of anisotropic smoothness,” Dokl. Akad. Nauk,323, No. 4, 615–618 (1992).Google Scholar
  8. 8.
    H. Tribelle, Theory of Functional Spaces [Russian translation], Mir, Moscow (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • M. Z. Berkolaiko
    • 1
    • 2
  • I. Ya. Novikov
    • 1
    • 2
  1. 1.Voronezh Engineering Design InstituteUSSR
  2. 2.Voronezh State UniversityUSSR

Personalised recommendations