Journal of Bioenergetics and Biomembranes

, Volume 27, Issue 3, pp 331–340 | Cite as

Electron transfer from cytochromeb5 to cytochromec

  • Bill Durham
  • Jill L. Fairris
  • Mark McLean
  • Frank Millett
  • Jill R. Scott
  • Stephen G. Sligar
  • Anne Willie


The reaction of cytochromeb5 with cytochromec has become a very prominent system for investigating fundamental questions regarding interprotein electron transfer. One of the first computer modeling studies of electron transfer and protein/protein interaction was reported using this system. Subsequently, numerous studies focused on the experimental determination of the features which control protein/protein interactions. Kinetic measurements of the intracomplex electron transfer reaction have only appeared in the last 10 years. The current review will provide a summary of the kinetic measurements and a critical assessment of the interpretation of these experiments.

Key words

Cytochromeb5 cytochromec electron transfer kinetics ruthenium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argos, P., and Mathews, F. S. (1975).J. Biol. Chem. 250, 747.PubMedGoogle Scholar
  2. Berghuis, A. M., and Brayer, G. D. (1992).J. Mol. Biol. 223, 959.PubMedGoogle Scholar
  3. Borgese, N., and Longhi, R. (1990).Biochem. J. 266, 341.PubMedGoogle Scholar
  4. Burch, A. M., Rigby, S. E. J., Funk, W. D., MacGillivray, R. T. A., Mauk, M. R., Mauk, A. G., and Moore, G. R. (1990).Science 247, 831.PubMedGoogle Scholar
  5. Eley, C. G. S., and Moore, G. R. (1983).Biochem. J. 215, 11.PubMedGoogle Scholar
  6. Eltis, L., Mauk, A. G., Hazzard, J. T., Cusanovich, M. A., and Tollin, G. (1988).Biochemistry 27, 5455.PubMedGoogle Scholar
  7. Eltis, L., Herbert, R. G., Barker, P. D., Mauk, A. G., and Northrup, S. H. (1991).Biochemistry 30, 3663.PubMedGoogle Scholar
  8. Everest, A. M., Wallin, S. A., Stemp, E. D. A., Nocek, J. M., Mauk, A. G., and Hoffman, B (1991).J. Am. Chem. Soc. 113, 4337.Google Scholar
  9. Giordano, S. J., and Steggles, A. W. (1993).Biochim. Biophys. Acta 1172, 95.PubMedGoogle Scholar
  10. Gray, H. B., and Malmstrom, B. G. (1989).Biochemistry 28, 7499.PubMedGoogle Scholar
  11. Guillemette, J. G., Barker, P. D., Eltis, L. D., Lo, T. P., Smith, M., Brayer, G. D., and Mauk, A. G. (1994).Biochimic 76, 592.Google Scholar
  12. Holmans, P. L., Shet, M. S., Martin-Wixtrom, C. A., Fisher, C. W., and Estabrook, R. W. (1994).Arch. Biochem. Biophys. 312, 554.PubMedGoogle Scholar
  13. Hultquist, D. E., Sannes, L. J., and Schafer, D. A. (1981).Prog. Clin. Biol. Res. 55, 291.PubMedGoogle Scholar
  14. Kalyanasundaram, K. (1992).Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, New York.Google Scholar
  15. Lederer, F., Ghrir, B., Guiard, B., Guiard, B., Cortial, S., and Ito, A. (1983).Eur. J. Biochem. 132, 95.PubMedGoogle Scholar
  16. Lehninger, A. L. (1964).The Mitochondrion: Molecular Basis of Structure and Function, Benjamin, New York.Google Scholar
  17. Marcus, R. A. (1956).J. Chem Phys. 24, 966.Google Scholar
  18. Marcus, R. A., and Sutin, N. (1985).Biochim. Biophys. Acta 811, 265.Google Scholar
  19. Matlib, M. A., and O'Brien, P. J. (1976).Arch. Biochem. Biophys. 173, 27.PubMedGoogle Scholar
  20. Mauk, M. R., and Mauk, A. G. (1986).Biochemistry 25, 7085.PubMedGoogle Scholar
  21. Mauk, A. G., and Scott, R. A., eds. (1994).Cytochrome c Sourcebook, University Science, Menlo Park.Google Scholar
  22. Mauk, M. R., Reid, L. S., and Mauk, A. G. (1982).Biochemistry 21, 1843.PubMedGoogle Scholar
  23. McLendon, G. (1988).Acc. Chem. Res. 21, 160.Google Scholar
  24. McLendon, G., and Miller, J. R. (1985).J. Am. Chem. Soc. 107, 7811.Google Scholar
  25. Meyer, T. E., Rivera, M., Walker, F. A., Mauk, M. R., Mauk, A. G., Cusanovich, M. A., and Tollin, G. (1993).Biochemistry 32, 622.PubMedGoogle Scholar
  26. Moore, G. R., and Pettigrew, G. W. (1990).Cytochrome c. Evolutionary Structure and Physiochemical Aspects, Springer-Verlag, Heidelberg.Google Scholar
  27. Ng, S., Smith, M. B., Smith, H. T., and Millett, F. (1977).Biochemistry 16, 4975.PubMedGoogle Scholar
  28. Northrup, S. H., Thomasson, K. A., Miller, C. M., Barker, P. D., Eltis, L. D., Guillemette, J. G., Inglis, S. C., and Mauk, A. G. (1993).Biochemistry 32, 6613.PubMedGoogle Scholar
  29. Ozols, J., and Gerard, C. (1977).Proc. Natl. Acad. Sci. USA 74, 3725.PubMedGoogle Scholar
  30. Pan, L. P., Durham, B., Wolinska, J., and Millett, F. (1988).Biochemistry 27, 7180.PubMedGoogle Scholar
  31. Pan, L. P., Frame, M., Durham, B., Davis, D., and Millett, F. (1990).Biochemistry 29, 3231.PubMedGoogle Scholar
  32. Pompon, D., and Coon, M. J. (1984).J. Biol. Chem. 259, 15377.PubMedGoogle Scholar
  33. Qin, L., and Kostic, N. M. (1994).Biochemistry 33, 12592.PubMedGoogle Scholar
  34. Qin, L., Rodgers, K. K., and Sligar, S. G. (1991).Mol. Cryst. Liq. Cryst. 194, 311.Google Scholar
  35. Reid, L. S., Taniguchi, V. T., Gray, H. B., and Mauk, A. G. (1982).J. Am. Chem. Soc. 104, 7516.Google Scholar
  36. Reid, L. S., Mauk, M. R., and Mauk, A. G. (1984).J. Am. Chem. Soc. 106, 2182.Google Scholar
  37. Rodgers, K. K., and Sligar, S. G. (1991).J. Mol. Biol. 221, 1453.PubMedGoogle Scholar
  38. Rodgers, K. K., Pochapsky, T. C., and Sligar, S. G. (1988). Science240, 1657.PubMedGoogle Scholar
  39. Salemme, F. R. (1976).J. Mol. Biol. 102, 563.PubMedGoogle Scholar
  40. Scott, J. R., Willie A., McLean, M., Stayton, P., Sligar, S. G., Durham, B., and Millett, F. (1993).J. Am. Chem. Soc. 115, 6820.Google Scholar
  41. Shirabe, K., Yubisui, T., and Takeshita, M. (1989).Biochim. Biophys. Acta 1008, 189–192.PubMedGoogle Scholar
  42. Smith, M. B., Stonehuerner, J., Ahmed, A. G., Staudenmayer, N., and Millett, F. (1980).Biochim. Biophys. Acta 592, 303.PubMedGoogle Scholar
  43. Spatz, L., and Strittmatter, P. (1971).Proc. Natl. Acad. Sci. USA 68, 1042.PubMedGoogle Scholar
  44. Spatz, L., and Strittmatter, P. (1973).J. Biol. Chem. 248, 793.PubMedGoogle Scholar
  45. Stonehuemer, J., Williams, J. B., and Millett, F. (1979).Biochemistry 18, 5422.PubMedGoogle Scholar
  46. Strittmatter, P. (1964). InRapid Mixing and Sampling in Biochemistry (Chance, B., Eisenhardt, R., Gibson, Q. H., and Lundberg-Holm, K., eds.), Academic Press, New York.Google Scholar
  47. Strittmatter, P., Spatz, L., Corcoran, D., Rojers, M. J., Setlow, B., and Redline, R. (1974).Proc. Natl. Acad. Sci. USA 71, 4565.PubMedGoogle Scholar
  48. Tollin, G., and Hazard, J. T. (1991).Arch. Biochem. Biophys. 287, 1.PubMedGoogle Scholar
  49. Wendoloski, J. J., Matthew, J. B., Weber, P. C., and Salemme, F. R. (1987).Science 238, 794.PubMedGoogle Scholar
  50. Whitford, D., Concar, D. W., Veitch, N. C., and Williams, R. J. P. (1990).Eur. J. Biochem. 192, 715.PubMedGoogle Scholar
  51. Willie, A., Stayton, P., Sligar, S. G., Durham, B., and Millett, F. (1992).Biochemistry 31, 7237.PubMedGoogle Scholar
  52. Willie, A., McLean, M., Liu, R., Hilgen-Willis, S., Saunders, A. J., Pielak, G. J., Sligar, S. G., Durham, B., and Millett, F. (1993).Biochemistry 32, 7519.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Bill Durham
    • 1
  • Jill L. Fairris
    • 1
  • Mark McLean
    • 2
  • Frank Millett
    • 1
  • Jill R. Scott
    • 1
  • Stephen G. Sligar
    • 2
  • Anne Willie
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of ArkansasFayetteville
  2. 2.Beckman Institute for Advanced Science and TechnologyUniversity of IllinoisUrbana

Personalised recommendations