Skip to main content
Log in

Use of flavin photochemistry to probe intraprotein and interprotein electron transfer mechanisms

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Photoexcitation of flavin analogs generates the lowest triplet state (via intersystem crossing from the first excited singlet state) in the nanosecond time domain and with high quantum efficiency. The triplet, being a strong oxidant, can abstract a hydrogen atom (or an electron) from a reduced donor in a diffusion-controlled reaction. If the donor is a redox protein, the oxidation process can be used to initiate an electron transfer sequence involving either intramolecular or intermolecular reactions. If the donor is an organic compound such as EDTA, the neutral flavin semiquinone will be produced by H atom abstraction; this is a strong reductant and can subsequently transfer a hydrogen atom (or an electron) to an oxidized redox protein, thereby again initiating a sequence of intramolecular or intermolecular processes. If flavin photoexcitation is accomplished using a pulsed laser light source, the initiation of these protein electron transfer reactions can be made to occur in the nanosecond to microsecond time domain, and the sequence of events can be followed by time-resolved spectrophotometry to obtain rate constants and thus mechanistic information. The present paper describes this technology, and selected examples of its use in the investigation of redox protein mechanisms are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I., Cusanovich, M. A., and Tollin, G. (1981).Proc. Natl. Acad. Sci. USA 78, 6724–6728.

    PubMed  Google Scholar 

  • Cusanovich, M. A., Meyer, T. E., and Tollin, G. (1988). InAdvances in Inorganic Biochemistry, Vol. 7, Heme Proteins (Eichorn, G. L., and Marzilli, L. G., eds), Elsevier, New York, pp. 37–91.

    Google Scholar 

  • Edmondson, D. E., Barman, B., and Tollin, G. (1972).Biochemistry 11, 1133–1138.

    PubMed  Google Scholar 

  • Hazzard, J. T., Marchesini, A., Curir, P., and Tollin, G. (1994a).Biochim. Biophys. Acta 1208, 166–170.

    PubMed  Google Scholar 

  • Hazzard, J. T., McDonough, C.A., and Tollin, G. (1994b).Biochemistry 33, 13445–13454.

    PubMed  Google Scholar 

  • Hurley, J. K., Salamon, Z., Meyer, T. E., Fitch, J. C., Cusanovich, M. A., Markley, J. L., Cheng, H., Xia, B., Chae, Y. K., Medina, M., Gomez-Moreno, C., and Tollin, G. (1993).Biochemistry 32, 9346–9354.

    PubMed  Google Scholar 

  • Jung, J., and Tollin, G. (1981).Biochemistry 20, 5124–5131.

    PubMed  Google Scholar 

  • Meyer, T. E., Marchesini, A., Cusanovich, M. A., and Tollin, G. (1991).Biochemistry 30, 4619–4623.

    PubMed  Google Scholar 

  • Simondsen, R. P., and Tollin, G. (1983).Biochemistry 22, 3008–3016.

    PubMed  Google Scholar 

  • Simondsen, R. P., Weber, P. C., Salemme, F. R., and Tollin, G. (1982).Biochemistry 21, 6366–6375.

    PubMed  Google Scholar 

  • Tollin, G., and Hazzard, J. T. (1991).Arch. Biochem. Biophys. 287, 1–7.

    PubMed  Google Scholar 

  • Tollin, G., Meyer, T. E., and Cusanovich, M. A. (1986).Biochim. Biophys. Acta 853, 29–41.

    PubMed  Google Scholar 

  • Tollin, G., Hurley, J. K., Hazzard, J. T., and Meyer, T. E. (1993).Biophys. Chem. 48, 259–279.

    PubMed  Google Scholar 

  • Traber, R., Kramer, H. E. A., and Hemmerich, P. (1982).Biochemistry 21, 1687–1693.

    PubMed  Google Scholar 

  • Walker, M. C., Pueyo, J. J., Navarro, J. A., Gomez-Moreno, C., and Tollin, G. (1991).Arch. Biochem. Biophys. 287, 351–358.

    PubMed  Google Scholar 

  • Walker, M. C., and Tollin, G. (1991).Biochemistry 30, 5546–5555.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tollin, G. Use of flavin photochemistry to probe intraprotein and interprotein electron transfer mechanisms. J Bioenerg Biomembr 27, 303–309 (1995). https://doi.org/10.1007/BF02110100

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110100

Key words

Navigation